{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T07:36:30Z","timestamp":1743060990848,"version":"3.40.3"},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031175091"},{"type":"electronic","value":"9783031175107"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-17510-7_4","type":"book-chapter","created":{"date-parts":[[2022,10,12]],"date-time":"2022-10-12T04:03:06Z","timestamp":1665547386000},"page":"46-56","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Identification of\u00a0Data Breaches from\u00a0Public Forums"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4137-0844","authenticated-orcid":false,"given":"Md. Akhtaruzzaman","family":"Adnan","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2197-3808","authenticated-orcid":false,"given":"Atika","family":"Younus","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2169-7631","authenticated-orcid":false,"given":"Md. Harun Al","family":"Kawser","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6881-3751","authenticated-orcid":false,"given":"Natasha","family":"Adhikary","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7109-7653","authenticated-orcid":false,"given":"Ahsan","family":"Habib","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4570-0946","authenticated-orcid":false,"given":"Rakib Ul","family":"Haque","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,13]]},"reference":[{"issue":"2","key":"4_CR1","first-page":"177","volume":"22","author":"I Keshta","year":"2021","unstructured":"Keshta, I., Odeh, A.: Security and privacy of electronic health records: concerns and challenges. Egypt. Inf. J. 22(2), 177\u2013183 (2021)","journal-title":"Egypt. Inf. J."},{"key":"4_CR2","doi-asserted-by":"publisher","first-page":"105579","DOI":"10.1016\/j.clsr.2021.105579","volume":"42","author":"R Ong","year":"2021","unstructured":"Ong, R., Sabapathy, S.: Hong Kong\u2019s data breach notification scheme: from the stakeholders\u2019 perspectives. Comput. Law Sec. Rev. 42, 105579 (2021)","journal-title":"Comput. Law Sec. Rev."},{"issue":"4","key":"4_CR3","doi-asserted-by":"publisher","first-page":"1200","DOI":"10.1287\/isre.2020.0939","volume":"31","author":"J D\u2019Arcy","year":"2020","unstructured":"D\u2019Arcy, J., Adjerid, I., Angst, C.M., Glavas, A.: Too good to be true: firm social performance and the risk of data breach. Inf. Syst. Res. 31(4), 1200\u20131223 (2020)","journal-title":"Inf. Syst. Res."},{"key":"4_CR4","doi-asserted-by":"publisher","first-page":"48770","DOI":"10.1109\/ACCESS.2019.2910229","volume":"7","author":"Y Fang","year":"2019","unstructured":"Fang, Y., Guo, Y., Huang, C., Liu, L.: Analyzing and identifying data breaches in underground forums. IEEE Access 7, 48770\u201348777 (2019)","journal-title":"IEEE Access"},{"issue":"12","key":"4_CR5","doi-asserted-by":"publisher","first-page":"2096","DOI":"10.3390\/electronics9122096","volume":"9","author":"RU Haque","year":"2020","unstructured":"Haque, R.U., et al.: Privacy-preserving K-nearest neighbors training over blockchain-based encrypted health data. Electronics 9(12), 2096 (2020)","journal-title":"Electronics"},{"key":"4_CR6","series-title":"Studies in Big Data","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1007\/978-3-030-74575-2_3","volume-title":"Artificial Intelligence and Blockchain for Future Cybersecurity Applications","author":"RU Haque","year":"2021","unstructured":"Haque, R.U., Hasan, A.S.M.T.: Privacy-preserving multivariant regression analysis over blockchain-based encrypted IoMT data. In: Maleh, Y., Baddi, Y., Alazab, M., Tawalbeh, L., Romdhani, I. (eds.) Artificial Intelligence and Blockchain for Future Cybersecurity Applications. SBD, vol. 90, pp. 45\u201359. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-74575-2_3"},{"key":"4_CR7","series-title":"Internet of Things","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/978-3-030-93646-4_5","volume-title":"Advances in Blockchain Technology for Cyber Physical Systems","author":"RU Haque","year":"2022","unstructured":"Haque, R.U., Hasan, A.S.M.T., Nishat, T., Adnan, M.A.: Privacy-preserving k-means clustering over blockchain-based encrypted IoMT data. In: Maleh, Y., Tawalbeh, L., Motahhir, S., Hafid, A.S. (eds.) Advances in Blockchain Technology for Cyber Physical Systems. IT, pp. 109\u2013123. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-93646-4_5"},{"key":"4_CR8","series-title":"Studies in Computational Intelligence","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1007\/978-3-030-87954-9_12","volume-title":"Big Data Intelligence for Smart Applications","author":"RU Haque","year":"2022","unstructured":"Haque, R.U., Hasan, A.S.M.T.: Overview of blockchain-based privacy preserving machine learning for IoMT. In: Baddi, Y., Gahi, Y., Maleh, Y., Alazab, M., Tawalbeh, L. (eds.) Big Data Intelligence for Smart Applications. SCI, vol. 994, pp. 265\u2013278. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-87954-9_12"},{"issue":"1","key":"4_CR9","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1109\/TKDE.2010.100","volume":"23","author":"P Papadimitriou","year":"2010","unstructured":"Papadimitriou, P., Garcia-Molina, H.: Data leakage detection. IEEE Trans. Knowl. Data Eng. 23(1), 51\u201363 (2010)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"9","key":"4_CR10","first-page":"668","volume":"1","author":"SA Kale","year":"2012","unstructured":"Kale, S.A., Kulkarni, S.V.: Data leakage detection. Int. J. Adv. Res. Comput. Commun. Eng. 1(9), 668\u2013678 (2012)","journal-title":"Int. J. Adv. Res. Comput. Commun. Eng."},{"key":"4_CR11","unstructured":"Lu, M., Chang, P., Li, J., Fan, T., Zhu, W.: Data leakage prevention for resource limited device, U.S. Patent 8 286 253 B1, 9 October 2012"},{"key":"4_CR12","unstructured":"Brown, T.G., Mann, B.S.: System and method for data leakage prevention, U.S. Patent 8 578 504 B2, 5 November 2013"},{"key":"4_CR13","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1016\/j.ins.2013.10.005","volume":"262","author":"G Katz","year":"2014","unstructured":"Katz, G., Elovici, Y., Shapira, B.: CoBan: a context based model for data leakage prevention. Inf. Sci. 262, 137\u2013158 (2014)","journal-title":"Inf. Sci."},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"Onaolapo, J., Mariconti, E., Stringhini, G.: What happens after you are PWND: understanding the use of leaked Webmail credentials in the wild. In: Proceedings of the Internet Measurement Conference, pp. 65\u201379 (2016)","DOI":"10.1145\/2987443.2987475"},{"key":"4_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1007\/978-3-319-24192-0_7","volume-title":"Technology and Practice of Passwords","author":"D Jaeger","year":"2015","unstructured":"Jaeger, D., Graupner, H., Sapegin, A., Cheng, F., Meinel, C.: Gathering and analyzing identity leaks for security awareness. In: Mj\u00f8lsnes, S.F. (ed.) PASSWORDS 2014. LNCS, vol. 9393, pp. 102\u2013115. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24192-0_7"},{"key":"4_CR16","doi-asserted-by":"crossref","unstructured":"Thomas, K., et al.: Data breaches, phishing, or malware?: understanding the risks of stolen credentials. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pp. 1421\u20131434 (2017)","DOI":"10.1145\/3133956.3134067"},{"key":"4_CR17","unstructured":"Shu, X., Tian, K., Ciambrone, A., Yao, D.: Breaking the target: an analysis of target data breach and lessons learned. (2017). https:\/\/arxiv.org\/abs\/1701.04940"},{"key":"4_CR18","doi-asserted-by":"crossref","unstructured":"Butler, B., Wardman, B., Pratt, N.: REAPER: an automated, scalable solution for mass credential harvesting and OSINT. In: Proceedings APWG Symposium on Electronic Crime Research (eCrime), pp. 1\u201310 (2016)","DOI":"10.1109\/ECRIME.2016.7487944"},{"key":"4_CR19","doi-asserted-by":"crossref","unstructured":"Li, W., Yin, J., Chen, H.: Targeting key data breach services in underground supply chain. In: Proceedings of the IEEE Conference Intelligence and Security Informatics (ISI), pp. 322\u2013324 (2016)","DOI":"10.1109\/ISI.2016.7745501"},{"key":"4_CR20","unstructured":"Overdorf, R., Troncoso, C., Greenstadt, R., McCoy, D.: Under the underground: predicting private interactions in underground forums (2018). https:\/\/arxiv.org\/abs\/1805.04494"},{"key":"4_CR21","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Fan, Y., Hou, S., Liu, J., Ye, Y., Bourlai, T.: iDetector: automate underground forum analysis based on heterogeneous information network. In: Proceedings IEEE\/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1071\u20131078 (2018)","DOI":"10.1109\/ASONAM.2018.8508414"},{"key":"4_CR22","doi-asserted-by":"crossref","unstructured":"Portnoff, R.S., et al.: Tools for automated analysis of cybercriminal markets. In: Proceedings 26th International Conference World Wide Web Steering Committee, pp. 657\u2013666 (2017)","DOI":"10.1145\/3038912.3052600"},{"key":"4_CR23","first-page":"993","volume":"3","author":"DM Blei","year":"2003","unstructured":"Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993\u20131022 (2003)","journal-title":"J. Mach. Learn. Res."},{"key":"4_CR24","doi-asserted-by":"crossref","unstructured":"Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the Conference Empirical Methods Natural Lang. Processing, Association for Computational Linguistics, vol. 1, pp. 248\u2013256 (2009)","DOI":"10.3115\/1699510.1699543"},{"key":"4_CR25","doi-asserted-by":"crossref","unstructured":"Tasci, S., Gungor, T.: LDA-based keyword selection in text categorization. In: Proceedings of the 24th International Symposium on Computer and Information Sciences (ISCIS), pp. 230\u2013235 (2009)","DOI":"10.1109\/ISCIS.2009.5291818"},{"key":"4_CR26","doi-asserted-by":"crossref","unstructured":"Cui, L., Meng, F., Shi, Y., Li, M., Liu, A.: A hierarchy method based on LDA and SVM for news classification. In: Proceedings of the IEEE International Conference Data Mining Workshop (ICDMW), pp. 60\u201364 (2014)","DOI":"10.1109\/ICDMW.2014.8"},{"key":"4_CR27","series-title":"Lecture Notes in Electrical Engineering","doi-asserted-by":"publisher","first-page":"589","DOI":"10.1007\/978-981-10-6445-6_64","volume-title":"Proceedings of 2017 Chinese Intelligent Automation Conference","author":"Y Wei","year":"2018","unstructured":"Wei, Y., Wang, W., Wang, B., Yang, B., Liu, Y.: A method for topic classification of web pages using LDA-SVM model. In: Deng, Z. (ed.) CIAC 2017. LNEE, vol. 458, pp. 589\u2013596. Springer, Singapore (2018). https:\/\/doi.org\/10.1007\/978-981-10-6445-6_64"},{"key":"4_CR28","doi-asserted-by":"crossref","unstructured":"Quercia, D., Askham, H., Crowcroft, J.: TweetLDA: supervised topic classification and link prediction in twitter. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 247\u2013250 (2012)","DOI":"10.1145\/2380718.2380750"},{"key":"4_CR29","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543 (2014)","DOI":"10.3115\/v1\/D14-1162"},{"key":"4_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"380","DOI":"10.1007\/978-3-319-69900-4_48","volume-title":"Pattern Recognition and Machine Intelligence","author":"A Dey","year":"2017","unstructured":"Dey, A., Jenamani, M., Thakkar, J.J.: Lexical TF-IDF: an n-gram feature space for\u00a0cross-domain classification of sentiment\u00a0reviews. In: Shankar, B.U., Ghosh, K., Mandal, D.P., Ray, S.S., Zhang, D., Pal, S.K. (eds.) PReMI 2017. LNCS, vol. 10597, pp. 380\u2013386. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-69900-4_48"},{"key":"4_CR31","unstructured":"Nulled. https:\/\/www.Nulled.to\/. Accessed 14 Sep 2021"}],"container-title":["Lecture Notes in Computer Science","Innovative Security Solutions for Information Technology and Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-17510-7_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,23]],"date-time":"2022-12-23T12:04:03Z","timestamp":1671797043000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-17510-7_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031175091","9783031175107"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-17510-7_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"13 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}