{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T14:04:26Z","timestamp":1726409066033},"publisher-location":"Cham","reference-count":36,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031171420"},{"type":"electronic","value":"9783031171437"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-17143-7_14","type":"book-chapter","created":{"date-parts":[[2022,9,23]],"date-time":"2022-09-23T00:04:22Z","timestamp":1663891462000},"page":"275-294","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["SecureBiNN: 3-Party Secure Computation for\u00a0Binarized Neural Network Inference"],"prefix":"10.1007","author":[{"given":"Wenxing","family":"Zhu","sequence":"first","affiliation":[]},{"given":"Mengqi","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Xiangxue","family":"Li","sequence":"additional","affiliation":[]},{"given":"Qiang","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,24]]},"reference":[{"key":"14_CR1","unstructured":"Breast cancer wisconsin (diagnostic) data set (1995). Accessed 25 Apr 2022. https:\/\/archive.ics.uci.edu\/ml\/datasets\/Breast+Cancer+Wisconsin+%28Diagnostic%29"},{"key":"14_CR2","unstructured":"Indian liver patient records (2013). Accessed 25 Apr 2022. https:\/\/archive.ics.uci.edu\/ml\/datasets\/liver+disorders"},{"key":"14_CR3","unstructured":"Malaria cell images dataset (2019). Accessed 25 Apr 2022. https:\/\/www.kaggle.com\/datasets\/iarunava\/cell-images-for-detecting-malaria"},{"key":"14_CR4","unstructured":"Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, 2\u20134 November 2016, pp. 265\u2013283. USENIX Association (2016). https:\/\/www.usenix.org\/conference\/osdi16\/technical-sessions\/presentation\/abadi"},{"key":"14_CR5","doi-asserted-by":"publisher","unstructured":"Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24\u201328 October 2016, pp. 805\u2013817. ACM (2016). https:\/\/doi.org\/10.1145\/2976749.2978331","DOI":"10.1145\/2976749.2978331"},{"key":"14_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1007\/3-540-68535-9_40","volume-title":"Computing and Combinatorics","author":"D Beaver","year":"1998","unstructured":"Beaver, D.: One-time tables for two-party computation. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 361\u2013370. Springer, Heidelberg (1998). https:\/\/doi.org\/10.1007\/3-540-68535-9_40"},{"key":"14_CR7","doi-asserted-by":"publisher","unstructured":"Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: ngraph-he2: a high-throughput framework for neural network inference on encrypted data. In: Brenner, M., Lepoint, T., Rohloff, K. (eds.) Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC@CCS 2019, London, UK, 11\u201315 November 2019, pp. 45\u201356. ACM (2019). https:\/\/doi.org\/10.1145\/3338469.3358944","DOI":"10.1145\/3338469.3358944"},{"key":"14_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1007\/978-3-319-96878-0_17","volume-title":"Advances in Cryptology \u2013 CRYPTO 2018","author":"F Bourse","year":"2018","unstructured":"Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483\u2013512. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-96878-0_17"},{"key":"14_CR9","doi-asserted-by":"publisher","unstructured":"Canetti, R.: Universally composable security. J. ACM 67(5) (2020). https:\/\/doi.org\/10.1145\/3402457","DOI":"10.1145\/3402457"},{"key":"14_CR10","doi-asserted-by":"publisher","unstructured":"Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: Ezpc: programmable and efficient secure two-party computation for machine learning. In: IEEE European Symposium on Security and Privacy, EuroS &P 2019, Stockholm, Sweden, 17\u201319 June 2019, pp. 496\u2013511. IEEE (2019). https:\/\/doi.org\/10.1109\/EuroSP.2019.00043","DOI":"10.1109\/EuroSP.2019.00043"},{"key":"14_CR11","unstructured":"Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. CoRR abs\/1712.05526 (2017). https:\/\/arxiv.org\/abs\/1712.05526"},{"key":"14_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1007\/978-3-319-70694-8_15","volume-title":"Advances in Cryptology \u2013 ASIACRYPT 2017","author":"JH Cheon","year":"2017","unstructured":"Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409\u2013437. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-70694-8_15"},{"key":"14_CR13","doi-asserted-by":"crossref","unstructured":"Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, 8\u201311 February 2015. The Internet Society (2015). https:\/\/www.ndss-symposium.org\/ndss2015\/aby--framework-efficient-mixed-protocol-secure-two-party-computation","DOI":"10.14722\/ndss.2015.23113"},{"key":"14_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1007\/978-3-319-56614-6_8","volume-title":"Advances in Cryptology \u2013 EUROCRYPT 2017","author":"J Furukawa","year":"2017","unstructured":"Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225\u2013255. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-56614-6_8"},{"key":"14_CR15","unstructured":"Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, 19\u201324 June 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp. 201\u2013210. JMLR.org (2016). https:\/\/proceedings.mlr.press\/v48\/gilad-bachrach16.html"},{"key":"14_CR16","doi-asserted-by":"publisher","unstructured":"Ibarrondo, A., Chabanne, H., \u00d6nen, M.: Banners: binarized neural networks with replicated secret sharing. In: Borghys, D., Bas, P., Verdoliva, L., Pevn\u00fd, T., Li, B., Newman, J. (eds.) IH &MMSec 2021: ACM Workshop on Information Hiding and Multimedia Security, Virtual Event, Belgium, 22\u201325 June 2021, pp. 63\u201374. ACM (2021). https:\/\/doi.org\/10.1145\/3437880.3460394","DOI":"10.1145\/3437880.3460394"},{"key":"14_CR17","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6\u201311 July 2015, JMLR Workshop and Conference Proceedings, vol. 37, pp. 448\u2013456. JMLR.org (2015). https:\/\/proceedings.mlr.press\/v37\/ioffe15.html"},{"key":"14_CR18","unstructured":"Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15\u201317 August 2018, pp. 1651\u20131669. USENIX Association (2018). https:\/\/www.usenix.org\/conference\/usenixsecurity18\/presentation\/juvekar"},{"key":"14_CR19","unstructured":"Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Handb. Systemic Autoimmune Dis. 1(4) (2009)"},{"issue":"11","key":"14_CR20","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y Lecun","year":"1998","unstructured":"Lecun, Y., Bottou, L.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"key":"14_CR21","doi-asserted-by":"publisher","unstructured":"Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via minionn transformations. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October\u201303 November 2017, pp. 619\u2013631. ACM (2017). https:\/\/doi.org\/10.1145\/3133956.3134056","DOI":"10.1145\/3133956.3134056"},{"key":"14_CR22","doi-asserted-by":"publisher","unstructured":"Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: a cryptographic inference system for neural networks. In: Zhang, B., Popa, R.A., Zaharia, M., Gu, G., Ji, S. (eds.) PPMLP 2020: Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice, Virtual Event, USA, November 2020, pp. 27\u201330. ACM (2020). https:\/\/doi.org\/10.1145\/3411501.3419418","DOI":"10.1145\/3411501.3419418"},{"key":"14_CR23","doi-asserted-by":"publisher","unstructured":"Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19\u201338 (2017). https:\/\/doi.org\/10.1109\/SP.2017.12","DOI":"10.1109\/SP.2017.12"},{"key":"14_CR24","doi-asserted-by":"publisher","unstructured":"Mohassel, P., Rindal, P.: Aby$${}^{\\text{3}}$$: a mixed protocol framework for machine learning. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15\u201319 October 2018, pp. 35\u201352. ACM (2018). https:\/\/doi.org\/10.1145\/3243734.3243760","DOI":"10.1145\/3243734.3243760"},{"key":"14_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"369","DOI":"10.1007\/978-3-030-51280-4_20","volume-title":"Financial Cryptography and Data Security","author":"S Ohata","year":"2020","unstructured":"Ohata, S., Nuida, K.: Communication-efficient (client-aided) secure two-party protocols and its application. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 369\u2013385. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-51280-4_20"},{"key":"14_CR26","unstructured":"Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: improved mixed-protocol secure two-party computation. In: Bailey, M., Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021, 11\u201313 August 2021, pp. 2165\u20132182. USENIX Association (2021). https:\/\/www.usenix.org\/conference\/usenixsecurity21\/presentation\/patra"},{"key":"14_CR27","doi-asserted-by":"publisher","unstructured":"Rathee, D., et al.: Cryptflow2: practical 2-party secure inference. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS 2020: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, 9\u201313 November 2020, pp. 325\u2013342. ACM (2020). https:\/\/doi.org\/10.1145\/3372297.3417274","DOI":"10.1145\/3372297.3417274"},{"key":"14_CR28","unstructured":"Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K.E., Koushanfar, F.: XONN: xnor-based oblivious deep neural network inference. In: Heninger, N., Traynor, P. (eds.) 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, 14\u201316 August 2019, pp. 1501\u20131518. USENIX Association (2019). https:\/\/www.usenix.org\/conference\/usenixsecurity19\/presentation\/riazi"},{"key":"14_CR29","doi-asserted-by":"publisher","unstructured":"Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, ASIACCS 2018, pp. 707\u2013721. Association for Computing Machinery, New York (2018). https:\/\/doi.org\/10.1145\/3196494.3196522","DOI":"10.1145\/3196494.3196522"},{"key":"14_CR30","unstructured":"Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7\u20139 May 2015, Conference Track Proceedings (2015). https:\/\/arxiv.org\/abs\/1412.6550"},{"key":"14_CR31","doi-asserted-by":"publisher","unstructured":"Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22\u201326 May 2017, pp. 3\u201318. IEEE Computer Society (2017). https:\/\/doi.org\/10.1109\/SP.2017.41","DOI":"10.1109\/SP.2017.41"},{"key":"14_CR32","unstructured":"Smith, J., Everhart, J., Dickson, W., Knowler, W., Johannes, R.: Using the adap learning algorithm to forcast the onset of diabetes mellitus. In: Proceedings - Annual Symposium on Computer Applications in Medical Care, vol. 10 (1988)"},{"key":"14_CR33","unstructured":"Tram\u00e8r, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction apis. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, 10\u201312 August 2016, pp. 601\u2013618. USENIX Association (2016). https:\/\/www.usenix.org\/conference\/usenixsecurity16\/technical-sessions\/presentation\/tramer"},{"issue":"3","key":"14_CR34","doi-asserted-by":"publisher","first-page":"26","DOI":"10.2478\/popets-2019-0035","volume":"2019","author":"S Wagh","year":"2019","unstructured":"Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation for neural network training. Proc. Priv. Enhanc. Technol. 2019(3), 26\u201349 (2019). https:\/\/doi.org\/10.2478\/popets-2019-0035","journal-title":"Proc. Priv. Enhanc. Technol."},{"issue":"1","key":"14_CR35","doi-asserted-by":"publisher","first-page":"188","DOI":"10.2478\/popets-2021-0011","volume":"2021","author":"S Wagh","year":"2021","unstructured":"Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: Falcon: Honest-majority maliciously secure framework for private deep learning. Proc. Priv. Enhanc. Technol. 2021(1), 188\u2013208 (2021). https:\/\/doi.org\/10.2478\/popets-2021-0011","journal-title":"Proc. Priv. Enhanc. Technol."},{"issue":"2","key":"14_CR36","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1109\/MCSE.2011.37","volume":"13","author":"S van der Walt","year":"2011","unstructured":"van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22\u201330 (2011). https:\/\/doi.org\/10.1109\/MCSE.2011.37","journal-title":"Comput. Sci. Eng."}],"container-title":["Lecture Notes in Computer Science","Computer Security \u2013 ESORICS 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-17143-7_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,23]],"date-time":"2022-09-23T00:07:36Z","timestamp":1663891656000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-17143-7_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031171420","9783031171437"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-17143-7_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"24 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ESORICS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Symposium on Research in Computer Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Copenhagen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Denmark","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"esorics2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/esorics2022.compute.dtu.dk\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"562","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"104","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}