{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T11:53:53Z","timestamp":1743076433846,"version":"3.40.3"},"publisher-location":"Cham","reference-count":25,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031169601"},{"type":"electronic","value":"9783031169618"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-16961-8_8","type":"book-chapter","created":{"date-parts":[[2022,9,16]],"date-time":"2022-09-16T06:03:10Z","timestamp":1663308190000},"page":"73-83","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Deep Learning on\u00a0Lossily Compressed Pathology Images: Adverse Effects for\u00a0ImageNet Pre-trained Models"],"prefix":"10.1007","author":[{"given":"Maximilian","family":"Fischer","sequence":"first","affiliation":[]},{"given":"Peter","family":"Neher","sequence":"additional","affiliation":[]},{"given":"Michael","family":"G\u00f6tz","sequence":"additional","affiliation":[]},{"given":"Shuhan","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Silvia Dias","family":"Almeida","sequence":"additional","affiliation":[]},{"given":"Peter","family":"Sch\u00fcffler","sequence":"additional","affiliation":[]},{"given":"Alexander","family":"Muckenhuber","sequence":"additional","affiliation":[]},{"given":"Rickmer","family":"Braren","sequence":"additional","affiliation":[]},{"given":"Jens","family":"Kleesiek","sequence":"additional","affiliation":[]},{"given":"Marco","family":"Nolden","sequence":"additional","affiliation":[]},{"given":"Klaus","family":"Maier-Hein","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,15]]},"reference":[{"key":"8_CR1","doi-asserted-by":"publisher","unstructured":"Abels, E.,et al.: Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association. J. Pathol. 249(3), 286\u2013294 (2019). https:\/\/doi.org\/10.1002\/path.5331, https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/path.5331","DOI":"10.1002\/path.5331"},{"key":"8_CR2","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1200\/CCI.19.00068","volume":"4","author":"Y Chen","year":"2020","unstructured":"Chen, Y., Janowczyk, A., Madabhushi, A.: Quantitative assessment of the effects of compression on deep learning in digital pathology image analysis. JCO Clin. Cancer Inform. 4, 221\u2013233 (2020). https:\/\/doi.org\/10.1200\/CCI.19.00068","journal-title":"JCO Clin. Cancer Inform."},{"key":"8_CR3","doi-asserted-by":"crossref","unstructured":"Ciga, O., Xu, T., Martel, A.L.: Self supervised contrastive learning for digital histopathology. arXiv:2011.13971 [cs, eess] (2021)","DOI":"10.1016\/j.mlwa.2021.100198"},{"key":"8_CR4","doi-asserted-by":"publisher","unstructured":"Clunie, D.A.: DICOM format and protocol standardization-a core requirement for digital pathology success. Toxicol. Pathol. 49(4), 738\u2013749 (2020). https:\/\/doi.org\/10.1177\/0192623320965893, https:\/\/journals.sagepub.com\/doi\/10.1177\/0192623320965893","DOI":"10.1177\/0192623320965893"},{"key":"8_CR5","doi-asserted-by":"publisher","unstructured":"Cui, M., Zhang, D.Y.: Artificial intelligence and computational pathology. Lab. Invest. 101(4), 412\u2013422 (2021). https:\/\/doi.org\/10.1038\/s41374-020-00514-0, https:\/\/www.nature.com\/articles\/s41374-020-00514-0","DOI":"10.1038\/s41374-020-00514-0"},{"key":"8_CR6","unstructured":"Dosovitskiy, A., et al.: An image is worth 16 $$\\times $$ 16 words: transformers for image recognition at scale. arXiv:2010.11929 [cs] (2021)"},{"key":"8_CR7","doi-asserted-by":"publisher","unstructured":"Doyle, S., et al.: Evaluation of effects of JPEG2000 compression on a computer-aided detection system for prostate cancer on digitized histopathology. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1313\u20131316. IEEE (2010). https:\/\/doi.org\/10.1109\/ISBI.2010.5490238, https:\/\/ieeexplore.ieee.org\/document\/5490238\/","DOI":"10.1109\/ISBI.2010.5490238"},{"key":"8_CR8","doi-asserted-by":"publisher","unstructured":"Ehteshami Bejnordi, B., et al.: The CAMELYON16 consortium: diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199 (2017). https:\/\/doi.org\/10.1001\/jama.2017.14585, https:\/\/jama.jamanetwork.com\/article.aspx?doi=10.1001\/jama.2017.14585","DOI":"10.1001\/jama.2017.14585"},{"key":"8_CR9","doi-asserted-by":"publisher","unstructured":"Fedorov, A., et al.: NCI imaging data commons. Can. Res. 81(16), 4188\u20134193 (2021). https:\/\/doi.org\/10.1158\/0008-5472.CAN-21-0950, https:\/\/aacrjournals.org\/cancerres\/article\/81\/16\/4188\/670283\/NCI-Imaging-Data-CommonsNCI-Imaging-Data-Commons","DOI":"10.1158\/0008-5472.CAN-21-0950"},{"issue":"2","key":"8_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1117\/1.JMI.6.2.027501","volume":"6","author":"F Ghazvinian Zanjani","year":"2019","unstructured":"Ghazvinian Zanjani, F., Zinger, S., Piepers, B., Mahmoudpour, S., Schelkens, P.: Impact of JPEG 2000 compression on deep convolutional neural networks for metastatic cancer detection in histopathological images. J. Med. Imaging 6(2), 1 (2019). https:\/\/doi.org\/10.1117\/1.JMI.6.2.027501","journal-title":"J. Med. Imaging"},{"key":"8_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv:1512.03385 [cs] (2015)","DOI":"10.1109\/CVPR.2016.90"},{"key":"8_CR12","doi-asserted-by":"publisher","first-page":"37","DOI":"10.4103\/jpi.jpi_42_18","volume":"9","author":"MD Herrmann","year":"2018","unstructured":"Herrmann, M.D., et al.: Implementing the DICOM standard for digital pathology. J. Pathol. Inform. 9, 37 (2018). https:\/\/doi.org\/10.4103\/jpi.jpi_42_18","journal-title":"J. Pathol. Inform."},{"key":"8_CR13","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. arXiv:1608.06993 [cs] (2018)","DOI":"10.1109\/CVPR.2017.243"},{"key":"8_CR14","unstructured":"Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50$$\\times $$ fewer parameters and $$<$$0.5 mb model size. arXiv:1602.07360 [cs] (2016)"},{"issue":"6","key":"8_CR15","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84\u201390 (2017). https:\/\/doi.org\/10.1145\/3065386","journal-title":"Commun. ACM"},{"key":"8_CR16","doi-asserted-by":"publisher","unstructured":"Macenko, M., et al: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107\u20131110 (2009). https:\/\/doi.org\/10.1109\/ISBI.2009.5193250","DOI":"10.1109\/ISBI.2009.5193250"},{"key":"8_CR17","doi-asserted-by":"publisher","unstructured":"McBee, M.P., et al.: Deep learning in radiology. Acad. Radiol. 25(11), 1472\u20131480 (2018). https:\/\/doi.org\/10.1016\/j.acra.2018.02.018, https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1076633218301041","DOI":"10.1016\/j.acra.2018.02.018"},{"key":"8_CR18","unstructured":"Russakovsky, O., et al.: ImageNet large scale visual recognition challenge (2015). arxiv.org\/abs\/1409.0575"},{"key":"8_CR19","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs] (2015)"},{"key":"8_CR20","doi-asserted-by":"publisher","unstructured":"Sreelekha, G., Sathidevi, P.: An improved JPEG compression scheme using human visual system model. In: 2007 14th International Workshop on Systems, Signals and Image Processing and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services, pp. 98\u2013101 (2007). https:\/\/doi.org\/10.1109\/IWSSIP.2007.4381162","DOI":"10.1109\/IWSSIP.2007.4381162"},{"key":"8_CR21","doi-asserted-by":"publisher","unstructured":"Stathonikos, N., Nguyen, T.Q., van Diest, P.J.: Rocky road to digital diagnostics: implementation issues and exhilarating experiences. J. Clin. Pathol. 74(7), 415\u2013420 (2021). https:\/\/doi.org\/10.1136\/jclinpath-2020-206715, https:\/\/onlinelibrary.wiley.com\/doi\/10.1111\/his.13953","DOI":"10.1136\/jclinpath-2020-206715"},{"key":"8_CR22","doi-asserted-by":"publisher","unstructured":"Stathonikos, N., Nguyen, T.Q., Spoto, C.P., Verdaasdonk, M.A.M., Diest, P.J.: Being fully digital: perspective of a Dutch academic pathology laboratory. Histopathology 75(5), 621\u2013635 (2019). https:\/\/doi.org\/10.1111\/his.13953, https:\/\/onlinelibrary.wiley.com\/doi\/10.1111\/his.13953","DOI":"10.1111\/his.13953"},{"key":"8_CR23","unstructured":"Telegraph, T.I., Committee, T.C.: Digital compression and coding of continuous-tone still images - requirements and guidelines. https:\/\/www.w3.org\/Graphics\/JPEG\/itu-t81.pdf"},{"key":"8_CR24","doi-asserted-by":"publisher","unstructured":"Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962\u20131971 (2016). https:\/\/doi.org\/10.1109\/TMI.2016.2529665, https:\/\/ieeexplore.ieee.org\/document\/7460968\/","DOI":"10.1109\/TMI.2016.2529665"},{"issue":"1","key":"8_CR25","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1109\/30.125072","volume":"38","author":"G Wallace","year":"1992","unstructured":"Wallace, G.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 18\u201334 (1992). https:\/\/doi.org\/10.1109\/30.125072","journal-title":"IEEE Trans. Consum. Electron."}],"container-title":["Lecture Notes in Computer Science","Medical Optical Imaging and Virtual Microscopy Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16961-8_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,16]],"date-time":"2022-09-16T06:03:55Z","timestamp":1663308235000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16961-8_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031169601","9783031169618"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-16961-8_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"15 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MOVI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"movi2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/movi2022","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"72% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}