{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:50:10Z","timestamp":1726174210213},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031167591"},{"type":"electronic","value":"9783031167607"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-16760-7_8","type":"book-chapter","created":{"date-parts":[[2022,9,21]],"date-time":"2022-09-21T15:10:40Z","timestamp":1663773040000},"page":"76-85","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multi-Feature Vision Transformer via\u00a0Self-Supervised Representation Learning for\u00a0Improvement of\u00a0COVID-19 Diagnosis"],"prefix":"10.1007","author":[{"given":"Xiao","family":"Qi","sequence":"first","affiliation":[]},{"given":"David J.","family":"Foran","sequence":"additional","affiliation":[]},{"given":"John L.","family":"Nosher","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3232-8193","authenticated-orcid":false,"given":"Ilker","family":"Hacihaliloglu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,15]]},"reference":[{"issue":"3","key":"8_CR1","doi-asserted-by":"publisher","first-page":"1084","DOI":"10.1109\/TIP.2012.2226903","volume":"22","author":"M Alessandrini","year":"2012","unstructured":"Alessandrini, M., Basarab, A., Liebgott, H., Bernard, O.: Myocardial motion estimation from medical images using the monogenic signal. IEEE Trans. Image Process. 22(3), 1084\u20131095 (2012)","journal-title":"IEEE Trans. Image Process."},{"key":"8_CR2","doi-asserted-by":"crossref","unstructured":"Chen, C.F.R., Fan, Q., Panda, R.: CrossViT: cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 357\u2013366 (2021)","DOI":"10.1109\/ICCV48922.2021.00041"},{"key":"8_CR3","doi-asserted-by":"crossref","unstructured":"Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. CoRR abs\/2104.02057 (2021). https:\/\/arxiv.org\/abs\/2104.02057","DOI":"10.1109\/ICCV48922.2021.00950"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251\u20131258 (2017)","DOI":"10.1109\/CVPR.2017.195"},{"issue":"6","key":"8_CR5","doi-asserted-by":"publisher","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","volume":"26","author":"K Clark","year":"2013","unstructured":"Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digital Imaging 26(6), 1045\u20131057 (2013). https:\/\/doi.org\/10.1007\/s10278-013-9622-7","journal-title":"J. Digital Imaging"},{"key":"8_CR6","doi-asserted-by":"publisher","unstructured":"Desai, S., et al.: Chest imaging representing a COVID-19 positive rural U.S. population. Sci. Data 7, 1\u20136 (2020). https:\/\/doi.org\/10.1038\/s41597-020-00741-6","DOI":"10.1038\/s41597-020-00741-6"},{"key":"8_CR7","unstructured":"Dosovitskiy, A., et al.: An image is worth 16 $$\\times $$ 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"key":"8_CR8","doi-asserted-by":"publisher","first-page":"151972","DOI":"10.1109\/ACCESS.2021.3125324","volume":"9","author":"M Gazda","year":"2021","unstructured":"Gazda, M., Plavka, J., Gazda, J., Drotar, P.: Self-supervised deep convolutional neural network for chest x-ray classification. IEEE Access 9, 151972\u2013151982 (2021)","journal-title":"IEEE Access"},{"key":"8_CR9","series-title":"Lecture Notes on Data Engineering and Communications Technologies","doi-asserted-by":"publisher","first-page":"1000","DOI":"10.1007\/978-3-030-89698-0_102","volume-title":"Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery","author":"Y Hao","year":"2022","unstructured":"Hao, Y., Wang, Y., Wang, X.: Self-supervised pretraining for COVID-19 and other pneumonia detection from chest X-ray images. In: Xie, Q., Zhao, L., Li, K., Yadav, A., Wang, L. (eds.) ICNC-FSKD 2021. LNDECT, vol. 89, pp. 1000\u20131007. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-89698-0_102"},{"key":"8_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. CoRR abs\/1502.01852 (2015). http:\/\/arxiv.org\/abs\/1502.01852","DOI":"10.1109\/ICCV.2015.123"},{"key":"8_CR11","doi-asserted-by":"publisher","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). https:\/\/doi.org\/10.48550\/ARXIV.1503.02531, https:\/\/arxiv.org\/abs\/1503.02531","DOI":"10.48550\/ARXIV.1503.02531"},{"key":"8_CR12","unstructured":"de la Iglesia Vay\u00e1, M., et al.: BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients. arXiv preprint arXiv:2006.01174 (2020)"},{"key":"8_CR13","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)"},{"key":"8_CR14","unstructured":"Li, S., et al.: Pytorch distributed: experiences on accelerating data parallel training. CoRR abs\/2006.15704 (2020). https:\/\/arxiv.org\/abs\/2006.15704"},{"issue":"3","key":"8_CR15","doi-asserted-by":"publisher","first-page":"343","DOI":"10.1007\/s11548-017-1697-z","volume":"13","author":"Z Li","year":"2017","unstructured":"Li, Z., van Vliet, L.J., Stoker, J., Vos, F.M.: A hybrid optimization strategy for registering images with large local deformations and intensity variations. Int. J. Comput. Assist. Radiol. Surg. 13(3), 343\u2013351 (2017). https:\/\/doi.org\/10.1007\/s11548-017-1697-z","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"8_CR16","unstructured":"Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with restarts. CoRR abs\/1608.03983 (2016). http:\/\/arxiv.org\/abs\/1608.03983"},{"key":"8_CR17","unstructured":"Loshchilov, I., Hutter, F.: Fixing weight decay regularization in Adam. CoRR abs\/1711.05101 (2017). http:\/\/arxiv.org\/abs\/1711.05101"},{"key":"8_CR18","unstructured":"Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints. arXiv-1807 (2018)"},{"issue":"16","key":"8_CR19","doi-asserted-by":"publisher","first-page":"1996","DOI":"10.3390\/electronics10161996","volume":"10","author":"J Park","year":"2021","unstructured":"Park, J., Kwak, I.Y., Lim, C.: A deep learning model with self-supervised learning and attention mechanism for COVID-19 diagnosis using chest X-ray images. Electronics 10(16), 1996 (2021)","journal-title":"Electronics"},{"key":"8_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2021.102299","volume":"75","author":"S Park","year":"2022","unstructured":"Park, S., et al.: Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Med. Image Anal. 75, 102299 (2022)","journal-title":"Med. Image Anal."},{"key":"8_CR21","first-page":"1","volume":"19","author":"X Qi","year":"2020","unstructured":"Qi, X., Brown, L.G., Foran, D.J., Nosher, J., Hacihaliloglu, I.: Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. Int. J. Comput. Assist. Radiol. Surg. 19, 1\u201310 (2020)","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"8_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1007\/978-3-030-87589-3_16","volume-title":"Machine Learning in Medical Imaging","author":"X Qi","year":"2021","unstructured":"Qi, X., Foran, D.J., Nosher, J.L., Hacihaliloglu, I.: Multi-feature semi-supervised learning for COVID-19 diagnosis from chest X-ray images. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 151\u2013160. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87589-3_16"},{"key":"8_CR23","unstructured":"Raghu, M., Zhang, C., Kleinberg, J.M., Bengio, S.: Transfusion: understanding transfer learning with applications to medical imaging. CoRR abs\/1902.07208 (2019). http:\/\/arxiv.org\/abs\/1902.07208"},{"key":"8_CR24","doi-asserted-by":"crossref","unstructured":"Serena Low, W.C., et al.: An overview of deep learning techniques on chest X-ray and CT scan identification of COVID-19. In: Computational and Mathematical Methods in Medicine 2021 (2021)","DOI":"10.1155\/2021\/5528144"},{"key":"8_CR25","unstructured":"Sowrirajan, H., Yang, J., Ng, A.Y., Rajpurkar, P.: MOCO pretraining improves representation and transferability of chest X-ray models. CoRR abs\/2010.05352 (2020). https:\/\/arxiv.org\/abs\/2010.05352"},{"key":"8_CR26","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning (2016)","DOI":"10.1609\/aaai.v31i1.11231"},{"key":"8_CR27","unstructured":"Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., J\u00e9gou, H.: Training data-efficient image transformers & distillation through attention. CoRR abs\/2012.12877 (2020). https:\/\/arxiv.org\/abs\/2012.12877"},{"key":"8_CR28","doi-asserted-by":"publisher","unstructured":"Tsai, E.B., et al.: The RSNA international COVID-19 open annotated radiology database (RICORD). Radiology. 299, E204 (2021). https:\/\/doi.org\/10.1148\/radiol.2021203957, PMID: 33399506","DOI":"10.1148\/radiol.2021203957"},{"key":"8_CR29","unstructured":"Vaswani, A., et al.: Attention is all you need. CoRR abs\/1706.03762 (2017). http:\/\/arxiv.org\/abs\/1706.03762"},{"key":"8_CR30","doi-asserted-by":"publisher","unstructured":"Wang, L., Lin, Z.Q., Wong, A.: COVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10(1), 19549 (2020). https:\/\/doi.org\/10.1038\/s41598-020-76550-z","DOI":"10.1038\/s41598-020-76550-z"},{"key":"8_CR31","doi-asserted-by":"publisher","unstructured":"Winther, H.B., et al.: COVID-19 image repository (2020). https:\/\/doi.org\/10.6084\/m9.figshare.12275009.v1","DOI":"10.6084\/m9.figshare.12275009.v1"},{"issue":"4","key":"8_CR32","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0122332","volume":"10","author":"Y Zhao","year":"2015","unstructured":"Zhao, Y., Liu, Y., Wu, X., Harding, S.P., Zheng, Y.: Retinal vessel segmentation: an efficient graph cut approach with Retinex and local phase. PLoS ONE 10(4), e0122332 (2015)","journal-title":"PLoS ONE"}],"container-title":["Lecture Notes in Computer Science","Medical Image Learning with Limited and Noisy Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16760-7_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,21]],"date-time":"2022-09-21T15:12:07Z","timestamp":1663773127000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16760-7_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031167591","9783031167607"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-16760-7_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"15 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MILLanD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Workshop on Medical Image Learning with Limited and Noisy Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"milland2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/zghada90.wixsite.com\/milland","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"54","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}