{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T05:40:15Z","timestamp":1728884415122},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031166082"},{"type":"electronic","value":"9783031166099"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-16609-9_24","type":"book-chapter","created":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T07:31:48Z","timestamp":1676359908000},"page":"407-423","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["On the Use of the Matrix-Variate Tail-Inflated Normal Distribution for Parsimonious Mixture Modeling"],"prefix":"10.1007","author":[{"given":"Salvatore D.","family":"Tomarchio","sequence":"first","affiliation":[]},{"given":"Antonio","family":"Punzo","sequence":"additional","affiliation":[]},{"given":"Luca","family":"Bagnato","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,15]]},"reference":[{"issue":"3\u20134","key":"24_CR1","doi-asserted-by":"publisher","first-page":"561","DOI":"10.1016\/S0167-9473(02)00163-9","volume":"41","author":"C Biernacki","year":"2003","unstructured":"Biernacki, C., Celeux, G., Govaert, G.: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Stat. Data Anal. 41(3\u20134), 561\u2013575 (2003)","journal-title":"Comput. Stat. Data Anal."},{"issue":"2","key":"24_CR2","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1007\/s11634-013-0139-1","volume":"8","author":"RP Browne","year":"2014","unstructured":"Browne, R.P., McNicholas, P.D.: Estimating common principal components in high dimensions. Adv. Data Anal. Classific. 8(2), 217\u2013226 (2014)","journal-title":"Adv. Data Anal. Classific."},{"issue":"5","key":"24_CR3","doi-asserted-by":"publisher","first-page":"781","DOI":"10.1016\/0031-3203(94)00125-6","volume":"28","author":"G Celeux","year":"1995","unstructured":"Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognit. 28(5), 781\u2013793 (1995)","journal-title":"Pattern Recognit."},{"issue":"1","key":"24_CR4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","volume":"39","author":"AP Dempster","year":"1977","unstructured":"Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1\u201322 (1977)","journal-title":"J. R. Stat. Soc. Ser. B (Methodol.)"},{"issue":"2","key":"24_CR5","first-page":"335","volume":"29","author":"FZ Do\u011fru","year":"2016","unstructured":"Do\u011fru, F.Z., Bulut, Y.M., Arslan, O.: Finite mixtures of matrix variate t distributions. Gazi Univ. J. Sci. 29(2), 335\u2013341 (2016)","journal-title":"Gazi Univ. J. Sci."},{"issue":"4","key":"24_CR6","doi-asserted-by":"publisher","first-page":"989","DOI":"10.1007\/s11749-019-00693-z","volume":"29","author":"A Farcomeni","year":"2020","unstructured":"Farcomeni, A., Punzo, A.: Robust model-based clustering with mild and gross outliers. Test 29(4), 989\u20131007 (2020)","journal-title":"Test"},{"key":"24_CR7","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1016\/j.patcog.2018.02.025","volume":"80","author":"MPB Gallaugher","year":"2018","unstructured":"Gallaugher, M.P.B., McNicholas, P.D.: Finite mixtures of skewed matrix variate distributions. Pattern Recognit. 80, 83\u201393 (2018)","journal-title":"Pattern Recognit."},{"key":"24_CR8","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4614-8154-6","volume-title":"Elliptically Contoured Models in Statistics and Portfolio Theory","author":"AK Gupta","year":"2013","unstructured":"Gupta, A.K., Varga, T., Bodnar, T.: Elliptically Contoured Models in Statistics and Portfolio Theory. Springer, New York (2013)"},{"issue":"8","key":"24_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v011.i08","volume":"11","author":"F Leisch","year":"2004","unstructured":"Leisch, F.: Flexmix: a general framework for finite mixture models and latent glass regression in R. J. Stat. Softw. 11(8), 1\u201318 (2004)","journal-title":"J. Stat. Softw."},{"key":"24_CR10","doi-asserted-by":"crossref","unstructured":"McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley (2007)","DOI":"10.1002\/9780470191613"},{"key":"24_CR11","doi-asserted-by":"publisher","DOI":"10.1002\/0471721182","volume-title":"Finite Mixture Models","author":"GJ McLachlan","year":"2000","unstructured":"McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)"},{"issue":"6","key":"24_CR12","doi-asserted-by":"publisher","first-page":"1381","DOI":"10.1016\/j.csda.2011.11.002","volume":"56","author":"V Melnykov","year":"2012","unstructured":"Melnykov, V., Melnykov, I.: Initializing the EM algorithm in Gaussian mixture models with an unknown number of components. Comput. Stat. Data Anal. 56(6), 1381\u20131395 (2012)","journal-title":"Comput. Stat. Data Anal."},{"key":"24_CR13","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1016\/j.jmva.2018.04.007","volume":"167","author":"V Melnykov","year":"2018","unstructured":"Melnykov, V., Zhu, X.: On model-based clustering of skewed matrix data. J. Multivar. Anal. 167, 181\u2013194 (2018)","journal-title":"J. Multivar. Anal."},{"issue":"1","key":"24_CR14","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1007\/s11634-018-0326-1","volume":"13","author":"V Melnykov","year":"2019","unstructured":"Melnykov, V., Zhu, X.: Studying crime trends in the USA over the years 2000\u20132012. Adv. Data Anal. Classific. 13(1), 325\u2013341 (2019)","journal-title":"Adv. Data Anal. Classific."},{"issue":"3","key":"24_CR15","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1111\/1467-9868.00082","volume":"59","author":"XL Meng","year":"1997","unstructured":"Meng, X.L., Van Dyk, D.: The EM algorithm-an old folk-song sung to a fast new tune. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 59(3), 511\u2013567 (1997)","journal-title":"J. R. Stat. Soc. Ser. B (Stat. Methodol.)"},{"issue":"4","key":"24_CR16","doi-asserted-by":"publisher","first-page":"563","DOI":"10.1007\/s11634-016-0264-8","volume":"10","author":"S Michael","year":"2016","unstructured":"Michael, S., Melnykov, V.: An effective strategy for initializing the EM algorithm in finite mixture models. Adv. Data Anal. Classific. 10(4), 563\u2013583 (2016)","journal-title":"Adv. Data Anal. Classific."},{"key":"24_CR17","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2019.106822","volume":"142","author":"S Sarkar","year":"2020","unstructured":"Sarkar, S., Zhu, X., Melnykov, V., Ingrassia, S.: On parsimonious models for modeling matrix data. Comput. Stat. Data Anal. 142, 106822 (2020)","journal-title":"Comput. Stat. Data Anal."},{"issue":"2","key":"24_CR18","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1214\/aos\/1176344136","volume":"6","author":"G Schwarz","year":"1978","unstructured":"Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461\u2013464 (1978)","journal-title":"Ann. Stat."},{"key":"24_CR19","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2020.107050","volume":"152","author":"SD Tomarchio","year":"2020","unstructured":"Tomarchio, S.D., Punzo, A., Bagnato, L.: Two new matrix-variate distributions with application in model-based clustering. Comput. Stat. Data Anal. 152, 107050 (2020)","journal-title":"Comput. Stat. Data Anal."},{"issue":"2","key":"24_CR20","doi-asserted-by":"publisher","first-page":"413","DOI":"10.1080\/10618600.2021.1999825","volume":"31","author":"SD Tomarchio","year":"2022","unstructured":"Tomarchio, S.D., Gallaugher, M.P.B., Punzo, A., McNicholas, P.D.: Mixtures of matrix-variate contaminated normal distributions. J. Comput. Graph. Stat. 31(2), 413\u2013421 (2022)","journal-title":"J. Comput. Graph. Stat."},{"issue":"3","key":"24_CR21","doi-asserted-by":"publisher","first-page":"556","DOI":"10.1007\/s00357-021-09389-2","volume":"38","author":"SD Tomarchio","year":"2021","unstructured":"Tomarchio, S.D., McNicholas, P.D., Punzo, A.: Matrix normal cluster-weighted models. J. Classific. 38(3), 556\u2013575 (2021)","journal-title":"J. Classific."},{"issue":"4","key":"24_CR22","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1007\/s11222-010-9188-x","volume":"21","author":"C Viroli","year":"2011","unstructured":"Viroli, C.: Finite mixtures of matrix normal distributions for classifying three-way data. Stat. Comput. 21(4), 511\u2013522 (2011)","journal-title":"Stat. Comput."},{"issue":"4","key":"24_CR23","doi-asserted-by":"publisher","first-page":"573","DOI":"10.1214\/11-BA622","volume":"6","author":"C Viroli","year":"2011","unstructured":"Viroli, C.: Model based clustering for three-way data structures. Bayesian Anal. 6(4), 573\u2013602 (2011)","journal-title":"Bayesian Anal."},{"key":"24_CR24","unstructured":"Zhu, X., Melnykov V.: MatTransMix: an R package for clustering matrices. R package version 0.1.15 (2021)"}],"container-title":["Springer Proceedings in Mathematics & Statistics","Studies in Theoretical and Applied Statistics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16609-9_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T04:59:45Z","timestamp":1728881985000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16609-9_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031166082","9783031166099"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-16609-9_24","relation":{},"ISSN":["2194-1009","2194-1017"],"issn-type":[{"type":"print","value":"2194-1009"},{"type":"electronic","value":"2194-1017"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"15 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Convegno della Societ\u00e0 Italiana di Statistica","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pisa","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 June 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 June 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sis2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}