{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:45:18Z","timestamp":1726173918451},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031164484"},{"type":"electronic","value":"9783031164491"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-16449-1_30","type":"book-chapter","created":{"date-parts":[[2022,9,16]],"date-time":"2022-09-16T08:04:54Z","timestamp":1663315494000},"page":"309-318","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Opportunistic Incidence Prediction of\u00a0Multiple Chronic Diseases from\u00a0Abdominal CT Imaging Using Multi-task Learning"],"prefix":"10.1007","author":[{"given":"Louis","family":"Blankemeier","sequence":"first","affiliation":[]},{"given":"Isabel","family":"Gallegos","sequence":"additional","affiliation":[]},{"given":"Juan Manuel","family":"Zambrano Chaves","sequence":"additional","affiliation":[]},{"given":"David","family":"Maron","sequence":"additional","affiliation":[]},{"given":"Alexander","family":"Sandhu","sequence":"additional","affiliation":[]},{"given":"Fatima","family":"Rodriguez","sequence":"additional","affiliation":[]},{"given":"Daniel","family":"Rubin","sequence":"additional","affiliation":[]},{"given":"Bhavik","family":"Patel","sequence":"additional","affiliation":[]},{"given":"Marc","family":"Willis","sequence":"additional","affiliation":[]},{"given":"Robert","family":"Boutin","sequence":"additional","affiliation":[]},{"given":"Akshay S.","family":"Chaudhari","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,17]]},"reference":[{"unstructured":"Chartbook and charts. https:\/\/www.cms.gov\/Research-Statistics-Data-and-Systems\/Statistics-Trends-and-Reports\/Chronic-Conditions\/Chartbook_Charts","key":"30_CR1"},{"unstructured":"Noncommunicable diseases. https:\/\/www.who.int\/health-topics\/noncommunicable-diseases","key":"30_CR2"},{"unstructured":"Chronic kidney disease in the united states, 2021, March 2021. https:\/\/www.cdc.gov\/kidneydisease\/publications-resources\/ckd-national-facts.html","key":"30_CR3"},{"unstructured":"Facts about hypertension, September 2021. https:\/\/www.cdc.gov\/bloodpressure\/","key":"30_CR4"},{"unstructured":"Heart disease facts, February 2022. https:\/\/www.cdc.gov\/heartdisease\/facts.htm","key":"30_CR5"},{"unstructured":"National diabetes statistics report, January 2022. https:\/\/www.cdc.gov\/diabetes\/data\/statistics-report\/index.html","key":"30_CR6"},{"issue":"18","key":"30_CR7","doi-asserted-by":"publisher","first-page":"1917","DOI":"10.1001\/jama.2015.11219","volume":"314","author":"S Bangalore","year":"2015","unstructured":"Bangalore, S., Maron, D.J., Hochman, J.S.: Evidence-based management of stable ischemic heart disease. JAMA 314(18), 1917 (2015). https:\/\/doi.org\/10.1001\/jama.2015.11219","journal-title":"JAMA"},{"issue":"4","key":"30_CR8","doi-asserted-by":"publisher","first-page":"575","DOI":"10.1016\/j.rcl.2022.03.001","volume":"60","author":"RD Boutin","year":"2022","unstructured":"Boutin, R.D., Houston, D.K., Chaudhari, A.S., Willis, M.H., Fausett, C.L., Lenchik, L.: Imaging of sarcopenia. Radiol. Clin. North Am. 60(4), 575\u2013582 (2022). https:\/\/doi.org\/10.1016\/j.rcl.2022.03.001","journal-title":"Radiol. Clin. North Am."},{"issue":"3","key":"30_CR9","doi-asserted-by":"publisher","first-page":"582","DOI":"10.2214\/ajr.20.22874","volume":"215","author":"RD Boutin","year":"2020","unstructured":"Boutin, R.D., Lenchik, L.: Value-added opportunistic CT: insights into osteoporosis and sarcopenia. Am. J. Roentgenol. 215(3), 582\u2013594 (2020). https:\/\/doi.org\/10.2214\/ajr.20.22874","journal-title":"Am. J. Roentgenol."},{"issue":"12","key":"30_CR10","doi-asserted-by":"publisher","first-page":"1234","DOI":"10.1016\/j.jclinepi.2008.01.006","volume":"61","author":"ME Charlson","year":"2008","unstructured":"Charlson, M.E., Charlson, R.E., Peterson, J.C., Marinopoulos, S.S., Briggs, W.M., Hollenberg, J.P.: The Charlson comorbidity index is adapted to predict costs of chronic disease in primary care patients. J. Clin. Epidemiol. 61(12), 1234\u20131240 (2008). https:\/\/doi.org\/10.1016\/j.jclinepi.2008.01.006","journal-title":"J. Clin. Epidemiol."},{"key":"30_CR11","doi-asserted-by":"publisher","DOI":"10.1093\/bmb\/ldaa005","author":"MA Clynes","year":"2020","unstructured":"Clynes, M.A., Harvey, N.C., Curtis, E.M., Fuggle, N.R., Dennison, E.M., Cooper, C.: The epidemiology of osteoporosis. Br. Med. Bull. (2020). https:\/\/doi.org\/10.1093\/bmb\/ldaa005","journal-title":"Br. Med. Bull."},{"unstructured":"Cohen, J.P., et al.: Gifsplanation via latent shift: a simple autoencoder approach to progressive exaggeration on chest x-rays. CoRR abs\/2102.09475 (2021). https:\/\/arxiv.org\/abs\/2102.09475","key":"30_CR12"},{"issue":"1","key":"30_CR13","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1038\/s41591-019-0720-z","volume":"26","author":"N Dagan","year":"2020","unstructured":"Dagan, N., et al.: Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization. Nat. Med. 26(1), 77\u201382 (2020). https:\/\/doi.org\/10.1038\/s41591-019-0720-z","journal-title":"Nat. Med."},{"unstructured":"Rijken, M., Van Kerkhof, M., Dekker, J., Schellevis, F.G.: Comorbidity of chronic diseases: effects of disease pairs on physical and mental functioning. https:\/\/pubmed.ncbi.nlm.nih.gov\/15789940\/","key":"30_CR14"},{"unstructured":"Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., Finn, C.: Efficiently identifying task groupings for multi-task learning. CoRR abs\/2109.04617 (2021). https:\/\/arxiv.org\/abs\/2109.04617","key":"30_CR15"},{"unstructured":"Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1126\u20131135. PMLR, 06\u201311 August 2017. https:\/\/proceedings.mlr.press\/v70\/finn17a.html","key":"30_CR16"},{"unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs\/1512.03385 (2015). http:\/\/arxiv.org\/abs\/1512.03385","key":"30_CR17"},{"issue":"2","key":"30_CR18","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1007\/s12020-012-9768-y","volume":"43","author":"T Higgins","year":"2012","unstructured":"Higgins, T.: Hba1c for screening and diagnosis of diabetes mellitus. Endocrine 43(2), 266\u2013273 (2012). https:\/\/doi.org\/10.1007\/s12020-012-9768-y","journal-title":"Endocrine"},{"unstructured":"Kanavati, F., Islam, S., Arain, Z., Aboagye, E.O., Rockall, A.: Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment (2020)","key":"30_CR19"},{"doi-asserted-by":"publisher","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https:\/\/doi.org\/10.48550\/ARXIV.1412.6980, https:\/\/arxiv.org\/abs\/1412.6980","key":"30_CR20","DOI":"10.48550\/ARXIV.1412.6980"},{"doi-asserted-by":"publisher","unstructured":"LaVallee, L.A., Scott, M.A., Hulkower, S.D.: Challenges in the screening and management of osteoporosis. North Carol. Med. J. 77(6), 416\u2013419 (2016). https:\/\/doi.org\/10.18043\/ncm.77.6.416","key":"30_CR21","DOI":"10.18043\/ncm.77.6.416"},{"doi-asserted-by":"publisher","unstructured":"Liu, C.T., et al.: Visceral adipose tissue is associated with bone microarchitecture in the Framingham osteoporosis study. J. Bone Mineral Res. 32(1), 143\u2013150 (2017). https:\/\/doi.org\/10.1002\/jbmr.2931, https:\/\/asbmr.onlinelibrary.wiley.com\/doi\/abs\/10.1002\/jbmr.2931","key":"30_CR22","DOI":"10.1002\/jbmr.2931"},{"issue":"3","key":"30_CR23","doi-asserted-by":"publisher","first-page":"513","DOI":"10.1007\/s00256-021-03863-z","volume":"51","author":"W Manzano","year":"2021","unstructured":"Manzano, W., Lenchik, L., Chaudhari, A.S., Yao, L., Gupta, S., Boutin, R.D.: Sarcopenia in rheumatic disorders: what the radiologist and rheumatologist should know. Skeletal Radiol. 51(3), 513\u2013524 (2021). https:\/\/doi.org\/10.1007\/s00256-021-03863-z","journal-title":"Skeletal Radiol."},{"issue":"1","key":"30_CR24","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1377\/hlthaff.2020.02022","volume":"40","author":"AB Martin","year":"2021","unstructured":"Martin, A.B., Hartman, M., Lassman, D., Catlin, A.: National health care spending in 2019: steady growth for the fourth consecutive year. Health Aff. 40(1), 14\u201324 (2021). https:\/\/doi.org\/10.1377\/hlthaff.2020.02022","journal-title":"Health Aff."},{"unstructured":"Mettler, F.A., et al.: Patient exposure from radiologic and nuclear medicine procedures in the united states: procedure volume and effective dose for the period 2006\u20132016 (2020)","key":"30_CR25"},{"unstructured":"Oecd. https:\/\/stats.oecd.org\/index.aspx?queryid=30184","key":"30_CR26"},{"unstructured":"Pfohl, S., Marafino, B.J., Coulet, A., Rodriguez, F., Palaniappan, L., Shah, N.H.: Creating fair models of atherosclerotic cardiovascular disease risk. CoRR abs\/1809.04663 (2018). http:\/\/arxiv.org\/abs\/1809.04663","key":"30_CR27"},{"doi-asserted-by":"publisher","unstructured":"Pickhardt, P.J., et al.: Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit. Health 2(4) (2020). https:\/\/doi.org\/10.1016\/s2589-7500(20)30025-x","key":"30_CR28","DOI":"10.1016\/s2589-7500(20)30025-x"},{"issue":"1","key":"30_CR29","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1097\/mco.0000000000000230","volume":"19","author":"JY Reginster","year":"2016","unstructured":"Reginster, J.Y., Beaudart, C., Buckinx, F., Bruy\u00e8re, O.: Osteoporosis and sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 19(1), 31\u201336 (2016). https:\/\/doi.org\/10.1097\/mco.0000000000000230","journal-title":"Curr. Opin. Clin. Nutr. Metab. Care"},{"unstructured":"Standley, T., Zamir, A.R., Chen, D., Guibas, L.J., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? CoRR abs\/1905.07553 (2019). http:\/\/arxiv.org\/abs\/1905.07553","key":"30_CR30"},{"doi-asserted-by":"publisher","unstructured":"Zambrano Chaves, J.M., et al.: Opportunistic assessment of ischemic heart disease risk using abdominopelvic computed tomography and medical record data: a multimodal explainable artificial intelligence approach. medRxiv (2021). https:\/\/doi.org\/10.1101\/2021.01.23.21250197, https:\/\/www.medrxiv.org\/content\/early\/2021\/01\/26\/2021.01.23.21250197","key":"30_CR31","DOI":"10.1101\/2021.01.23.21250197"},{"doi-asserted-by":"crossref","unstructured":"Zamir, A.R., Sax, A., Shen, W.B., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. CoRR abs\/1804.08328 (2018). http:\/\/arxiv.org\/abs\/1804.08328","key":"30_CR32","DOI":"10.1109\/CVPR.2018.00391"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16449-1_30","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T16:55:22Z","timestamp":1709830522000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16449-1_30"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031164484","9783031164491"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-16449-1_30","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"17 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft Conference","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1831","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"574","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}