{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T18:27:27Z","timestamp":1743100047390,"version":"3.40.3"},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031164361"},{"type":"electronic","value":"9783031164378"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-16437-8_65","type":"book-chapter","created":{"date-parts":[[2022,9,15]],"date-time":"2022-09-15T18:13:04Z","timestamp":1663265584000},"page":"675-685","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Morphology-Aware Interactive Keypoint Estimation"],"prefix":"10.1007","author":[{"given":"Jinhee","family":"Kim","sequence":"first","affiliation":[]},{"given":"Taesung","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Taewoo","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Jaegul","family":"Choo","sequence":"additional","affiliation":[]},{"given":"Dong-Wook","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Byungduk","family":"Ahn","sequence":"additional","affiliation":[]},{"given":"In-Seok","family":"Song","sequence":"additional","affiliation":[]},{"given":"Yoon-Ji","family":"Kim","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,16]]},"reference":[{"key":"65_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1007\/978-3-030-00937-3_7","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"B Bier","year":"2018","unstructured":"Bier, B., et al.: X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 55\u201363. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00937-3_7"},{"key":"65_CR2","unstructured":"Bulat, A., Sanchez, E., Tzimiropoulos, G.: Subpixel heatmap regression for facial landmark localization. In: The British Machine Vision Conference (BMVC) (2021)"},{"key":"65_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"873","DOI":"10.1007\/978-3-030-32248-9_97","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"R Chen","year":"2019","unstructured":"Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 873\u2013881. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32248-9_97"},{"key":"65_CR4","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"65_CR5","doi-asserted-by":"crossref","unstructured":"Jang, W.D., Kim, C.S.: Interactive image segmentation via backpropagating refinement scheme. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5297\u20135306 (2019)","DOI":"10.1109\/CVPR.2019.00544"},{"key":"65_CR6","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1111\/ocr.12514","volume":"24","author":"DW Kim","year":"2021","unstructured":"Kim, D.W., et al.: Prediction of hand-wrist maturation stages based on cervical vertebrae images using artificial intelligence. Orthod. Craniofac. Res. 24, 68\u201375 (2021)","journal-title":"Orthod. Craniofac. Res."},{"key":"65_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"622","DOI":"10.1007\/978-3-030-32226-7_69","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"F Kordon","year":"2019","unstructured":"Kordon, F., et al.: Multi-task localization and segmentation for X-Ray guided planning in knee surgery. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 622\u2013630. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32226-7_69"},{"key":"65_CR8","doi-asserted-by":"crossref","unstructured":"Lee, H.J., Kim, J.U., Lee, S., Kim, H.G., Ro, Y.M.: Structure boundary preserving segmentation for medical image with ambiguous boundary. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)","DOI":"10.1109\/CVPR42600.2020.00487"},{"key":"65_CR9","doi-asserted-by":"crossref","unstructured":"Li, J., Su, W., Wang, Z.: Simple pose: rethinking and improving a bottom-up approach for multi-person pose estimation. In: Proceedings the AAAI Conference on Artificial Intelligence (AAAI), pp. 11354\u201311361 (2020)","DOI":"10.1609\/aaai.v34i07.6797"},{"key":"65_CR10","doi-asserted-by":"crossref","unstructured":"Li, W., et al.: Structured landmark detection via topology-adapting deep graph learning. arXiv preprint arXiv:2004.08190 (2020)","DOI":"10.1007\/978-3-030-58545-7_16"},{"key":"65_CR11","doi-asserted-by":"crossref","unstructured":"Lin, Z., Zhang, Z., Chen, L.Z., Cheng, M.M., Lu, S.P.: Interactive image segmentation with first click attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13339\u201313348 (2020)","DOI":"10.1109\/CVPR42600.2020.01335"},{"key":"65_CR12","unstructured":"Mahadevan, S., Voigtlaender, P., Leibe, B.: Iteratively trained interactive segmentation. In: British Machine Vision Conference (BMVC) (2018)"},{"key":"65_CR13","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1016\/j.media.2019.03.007","volume":"54","author":"C Payer","year":"2019","unstructured":"Payer, C., \u0160tern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207\u2013219 (2019)","journal-title":"Med. Image Anal."},{"key":"65_CR14","doi-asserted-by":"crossref","unstructured":"Peng, C., Lin, W.A., Liao, H., Chellappa, R., Zhou, S.K.: Saint: spatially aware interpolation network for medical slice synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)","DOI":"10.1109\/CVPR42600.2020.00777"},{"key":"65_CR15","doi-asserted-by":"publisher","first-page":"112633","DOI":"10.1109\/ACCESS.2020.3002939","volume":"8","author":"J Qian","year":"2020","unstructured":"Qian, J., Luo, W., Cheng, M., Tao, Y., Lin, J., Lin, H.: CephaNN: a multi-head attention network for cephalometric landmark detection. IEEE Access 8, 112633\u2013112641 (2020)","journal-title":"IEEE Access"},{"issue":"5","key":"65_CR16","doi-asserted-by":"publisher","first-page":"443","DOI":"10.4103\/1735-3327.166192","volume":"12","author":"SM Safavi","year":"2015","unstructured":"Safavi, S.M., Beikaii, H., Hassanizadeh, R., Younessian, F., Baghban, A.A.: Correlation between cervical vertebral maturation and chronological age in a group of Iranian females. Dental Res. J. 12(5), 443 (2015)","journal-title":"Dental Res. J."},{"key":"65_CR17","unstructured":"Sakinis, T., et al.: Interactive segmentation of medical images through fully convolutional neural networks. arXiv preprint arXiv:1903.08205 (2019)"},{"key":"65_CR18","doi-asserted-by":"crossref","unstructured":"Sofiiuk, K., Petrov, I., Barinova, O., Konushin, A.: f-BRS: rethinking backpropagating refinement for interactive segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8623\u20138632 (2020)","DOI":"10.1109\/CVPR42600.2020.00865"},{"key":"65_CR19","doi-asserted-by":"crossref","unstructured":"Sofiiuk, K., Petrov, I., Konushin, A.: Reviving iterative training with mask guidance for interactive segmentation. arXiv preprint arXiv:2102.06583 (2021)","DOI":"10.1109\/ICIP46576.2022.9897365"},{"key":"65_CR20","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1016\/j.media.2016.02.004","volume":"31","author":"CW Wang","year":"2016","unstructured":"Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63\u201376 (2016)","journal-title":"Med. Image Anal."},{"issue":"7","key":"65_CR21","doi-asserted-by":"publisher","first-page":"1562","DOI":"10.1109\/TMI.2018.2791721","volume":"37","author":"G Wang","year":"2018","unstructured":"Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37(7), 1562\u20131573 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"10","key":"65_CR22","doi-asserted-by":"publisher","first-page":"3349","DOI":"10.1109\/TPAMI.2020.2983686","volume":"43","author":"J Wang","year":"2020","unstructured":"Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43(10), 3349\u20133364 (2020)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"key":"65_CR23","doi-asserted-by":"crossref","unstructured":"Wang, S., et al.: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)","DOI":"10.1109\/CVPR42600.2020.00918"},{"key":"65_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1007\/978-3-319-66182-7_15","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2017","author":"H Wu","year":"2017","unstructured":"Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 127\u2013135. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66182-7_15"},{"key":"65_CR25","doi-asserted-by":"crossref","unstructured":"Yi, J., Wu, P., Huang, Q., Qu, H., Metaxas, D.N.: Vertebra-focused landmark detection for scoliosis assessment. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 736\u2013740 (2020)","DOI":"10.1109\/ISBI45749.2020.9098675"},{"key":"65_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1007\/978-3-030-58539-6_11","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Y Yuan","year":"2020","unstructured":"Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173\u2013190. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58539-6_11"},{"key":"65_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"540","DOI":"10.1007\/978-3-030-32226-7_60","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"Z Zhong","year":"2019","unstructured":"Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 540\u2013548. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32226-7_60"},{"key":"65_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"560","DOI":"10.1007\/978-3-030-87196-3_52","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"T Zhou","year":"2021","unstructured":"Zhou, T., Li, L., Bredell, G., Li, J., Konukoglu, E.: Quality-aware memory network for interactive volumetric image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 560\u2013570. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87196-3_52"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16437-8_65","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T14:11:28Z","timestamp":1710252688000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16437-8_65"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031164361","9783031164378"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-16437-8_65","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"16 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft Conference","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1831","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"574","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}