{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T14:02:43Z","timestamp":1726408963652},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031164361"},{"type":"electronic","value":"9783031164378"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-16437-8_1","type":"book-chapter","created":{"date-parts":[[2022,9,15]],"date-time":"2022-09-15T18:13:04Z","timestamp":1663265584000},"page":"3-13","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Multi-view Local Co-occurrence and\u00a0Global Consistency Learning Improve Mammogram Classification Generalisation"],"prefix":"10.1007","author":[{"given":"Yuanhong","family":"Chen","sequence":"first","affiliation":[]},{"given":"Hu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Tian","sequence":"additional","affiliation":[]},{"given":"Fengbei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yuyuan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Michael","family":"Elliott","sequence":"additional","affiliation":[]},{"given":"Davis J.","family":"McCarthy","sequence":"additional","affiliation":[]},{"given":"Helen","family":"Frazer","sequence":"additional","affiliation":[]},{"given":"Gustavo","family":"Carneiro","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,16]]},"reference":[{"issue":"11","key":"1_CR1","doi-asserted-by":"publisher","first-page":"2355","DOI":"10.1109\/TMI.2017.2751523","volume":"36","author":"G Carneiro","year":"2017","unstructured":"Carneiro, G., Nascimento, J., Bradley, A.P.: Automated analysis of unregistered multi-view mammograms with deep learning. IEEE Trans. Med. Imaging 36(11), 2355\u20132365 (2017)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"1_CR2","doi-asserted-by":"publisher","first-page":"408","DOI":"10.1007\/s10278-019-00278-0","volume":"33","author":"K Dembrower","year":"2020","unstructured":"Dembrower, K., Lindholm, P., Strand, F.: A multi-million mammography image dataset and population-based screening cohort for the training and evaluation of deep neural networks-the cohort of screen-aged women (CSAW). J. Digit. Imaging 33(2), 408\u2013413 (2020)","journal-title":"J. Digit. Imaging"},{"key":"1_CR3","unstructured":"Dosovitskiy, A., et al.: An image is worth $$16 \\times 16$$ words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"issue":"5","key":"1_CR4","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1111\/1754-9485.13278","volume":"65","author":"HM Frazer","year":"2021","unstructured":"Frazer, H.M., Qin, A.K., Pan, H., Brotchie, P.: Evaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: results from a retrospective study using a BreastScreen Victoria dataset. J. Med. Imaging Radiat. Oncol. 65(5), 529\u2013537 (2021)","journal-title":"J. Med. Imaging Radiat. Oncol."},{"key":"1_CR5","doi-asserted-by":"crossref","unstructured":"Freeman, K., et al.: Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. bmj 374 (2021)","DOI":"10.1136\/bmj.n1872"},{"issue":"6","key":"1_CR6","doi-asserted-by":"publisher","first-page":"454","DOI":"10.1053\/crad.2000.0448","volume":"55","author":"A Hackshaw","year":"2000","unstructured":"Hackshaw, A., Wald, N., Michell, M., Field, S., Wilson, A.: An investigation into why two-view mammography is better than one-view in breast cancer screening. Clin. Radiol. 55(6), 454\u2013458 (2000)","journal-title":"Clin. Radiol."},{"key":"1_CR7","doi-asserted-by":"crossref","unstructured":"Halling-Brown, M.D., et al.: Optimam mammography image database: a large-scale resource of mammography images and clinical data. Radiol.: Artif. Intell. 3(1), e200103 (2020)","DOI":"10.1148\/ryai.2020200103"},{"key":"1_CR8","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"1_CR9","doi-asserted-by":"crossref","unstructured":"Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588\u20133597 (2018)","DOI":"10.1109\/CVPR.2018.00378"},{"key":"1_CR10","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"issue":"24","key":"1_CR11","doi-asserted-by":"publisher","first-page":"2353","DOI":"10.1056\/NEJMsr1504363","volume":"372","author":"B Lauby-Secretan","year":"2015","unstructured":"Lauby-Secretan, B., et al.: Breast-cancer screening-viewpoint of the IARC working group. N. Engl. J. Med. 372(24), 2353\u20132358 (2015)","journal-title":"N. Engl. J. Med."},{"key":"1_CR12","unstructured":"Liu, K., Shen, Y., Wu, N., Chlkedowski, J., Fernandez-Granda, C., Geras, K.J.: Weakly-supervised high-resolution segmentation of mammography images for breast cancer diagnosis. arXiv preprint arXiv:2106.07049 (2021)"},{"key":"1_CR13","doi-asserted-by":"crossref","unstructured":"Ma, J., Li, X., Li, H., Wang, R., Menze, B., Zheng, W.S.: Cross-view relation networks for mammogram mass detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8632\u20138638. IEEE (2021)","DOI":"10.1109\/ICPR48806.2021.9413132"},{"issue":"2","key":"1_CR14","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1016\/j.acra.2011.09.014","volume":"19","author":"IC Moreira","year":"2012","unstructured":"Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236\u2013248 (2012)","journal-title":"Acad. Radiol."},{"key":"1_CR15","unstructured":"Nolan, T.: The Chinese mammography database (CMMD) (2021). https:\/\/wiki.cancerimagingarchive.net\/pages\/viewpage.action?pageId=70230508. Accessed 21 Aug 2021"},{"key":"1_CR16","unstructured":"Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8026\u20138037 (2019)"},{"key":"1_CR17","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)"},{"issue":"1","key":"1_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-018-22437-z","volume":"8","author":"D Ribli","year":"2018","unstructured":"Ribli, D., Horv\u00e1th, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8(1), 1\u20137 (2018)","journal-title":"Sci. Rep."},{"issue":"3","key":"1_CR19","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vis."},{"key":"1_CR20","volume-title":"Breast Diseases: Imaging and Clinical Management","author":"R Selvi","year":"2014","unstructured":"Selvi, R.: Breast Diseases: Imaging and Clinical Management. Springer, Cham (2014)"},{"key":"1_CR21","unstructured":"Shen, L.: End-to-end training for whole image breast cancer diagnosis using an all convolutional design. arXiv preprint arXiv:1711.05775 (2017)"},{"issue":"1","key":"1_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-019-48995-4","volume":"9","author":"L Shen","year":"2019","unstructured":"Shen, L., Margolies, L.R., Rothstein, J.H., Fluder, E., McBride, R., Sieh, W.: Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 9(1), 1\u201312 (2019)","journal-title":"Sci. Rep."},{"key":"1_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1007\/978-3-030-32692-0_3","volume-title":"Machine Learning in Medical Imaging","author":"Y Shen","year":"2019","unstructured":"Shen, Y., et al.: Globally-aware multiple instance classifier for breast cancer screening. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 18\u201326. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32692-0_3"},{"key":"1_CR24","doi-asserted-by":"crossref","unstructured":"Shen, Y., et al.: An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization. Med. Image Anal. 68, 101908 (2021)","DOI":"10.1016\/j.media.2020.101908"},{"key":"1_CR25","unstructured":"Smith, K.: CBIS-DDSM (2021). https:\/\/wiki.cancerimagingarchive.net\/display\/Public\/CBIS-DDSM. Accessed 21 Aug 2021"},{"key":"1_CR26","unstructured":"Stadnick, B., et al.: Meta-repository of screening mammography classifiers. arxiv:2108.04800 (2021)"},{"key":"1_CR27","doi-asserted-by":"crossref","unstructured":"Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209\u2013249 (2021)","DOI":"10.3322\/caac.21660"},{"key":"1_CR28","unstructured":"Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105\u20136114. PMLR (2019)"},{"key":"1_CR29","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998\u20136008 (2017)"},{"key":"1_CR30","doi-asserted-by":"crossref","unstructured":"Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794\u20137803 (2018)","DOI":"10.1109\/CVPR.2018.00813"},{"key":"1_CR31","unstructured":"Wu, N., et al.: The NYU breast cancer screening dataset v1.0. Technical report, New York University (2019). https:\/\/cs.nyu.edu\/~kgeras\/reports\/datav1.0.pdf"},{"key":"1_CR32","doi-asserted-by":"crossref","unstructured":"Yang, Z., et al.: MommiNet-v2: mammographic multi-view mass identification networks. Med. Image Anal. 102204 (2021)","DOI":"10.1016\/j.media.2021.102204"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16437-8_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T14:01:40Z","timestamp":1710252100000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16437-8_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031164361","9783031164378"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-16437-8_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"16 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft Conference","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1831","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"574","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}