{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T20:01:51Z","timestamp":1742932911063,"version":"3.40.3"},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031160806"},{"type":"electronic","value":"9783031160813"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-16081-3_1","type":"book-chapter","created":{"date-parts":[[2022,9,17]],"date-time":"2022-09-17T22:02:24Z","timestamp":1663452144000},"page":"3-14","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Binary Search Double Greedy Algorithm for Non-monotone DR-submodular Maximization"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4535-2280","authenticated-orcid":false,"given":"Shuyang","family":"Gu","sequence":"first","affiliation":[]},{"given":"Chuangen","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Weili","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,18]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st International Conference on World Wide Web, pp. 381\u2013388 (2012)","key":"1_CR1","DOI":"10.1145\/2187836.2187888"},{"key":"1_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1007\/978-3-319-28684-6_12","volume-title":"Approximation and Online Algorithms","author":"C Gottschalk","year":"2015","unstructured":"Gottschalk, C., Peis, B.: Submodular function maximization on the bounded integer lattice. In: Sanit\u00e0, L., Skutella, M. (eds.) WAOA 2015. LNCS, vol. 9499, pp. 133\u2013144. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-28684-6_12"},{"issue":"4","key":"1_CR3","doi-asserted-by":"publisher","first-page":"1133","DOI":"10.1137\/090779346","volume":"40","author":"U Feige","year":"2011","unstructured":"Feige, U., Mirrokni, V.S., Vondr\u00e1k, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133\u20131153 (2011)","journal-title":"SIAM J. Comput."},{"unstructured":"Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing return property on the integer lattice. In: Advances in Neural Information Processing Systems, vol. 28 (2015)","key":"1_CR4"},{"issue":"5","key":"1_CR5","doi-asserted-by":"publisher","first-page":"1384","DOI":"10.1137\/130929205","volume":"44","author":"N Buchbinder","year":"2015","unstructured":"Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1\/2)-approximation for unconstrained submodular maximization. SIAM J. Comput. 44(5), 1384\u20131402 (2015)","journal-title":"SIAM J. Comput."},{"doi-asserted-by":"crossref","unstructured":"Soma, T., Yoshida, Y.: Non-monotone DR-submodular function maximization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1 (2017)","key":"1_CR6","DOI":"10.1609\/aaai.v31i1.10653"},{"unstructured":"Niazadeh, R., Roughgarden, T., Wang, J.: Optimal algorithms for continuous non-monotone submodular and DR-submodular maximization. In: Advances in Neural Information Processing Systems, vol. 31 (2018)","key":"1_CR7"},{"unstructured":"Bian, A., Levy, K., Krause, A., Buhmann, J.M.: Continuous DR-submodular maximization: structure and algorithms. In: Advances in Neural Information Processing Systems, vol. 30 (2017)","key":"1_CR8"},{"unstructured":"Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.-I.: Optimal budget allocation: theoretical guarantee and efficient algorithm. In: International Conference on Machine Learning, pp. 351\u2013359. PMLR (2014)","key":"1_CR9"},{"issue":"1","key":"1_CR10","doi-asserted-by":"publisher","first-page":"539","DOI":"10.1007\/s10107-018-1324-y","volume":"172","author":"T Soma","year":"2018","unstructured":"Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the integer lattice. Math. Program. 172(1), 539\u2013563 (2018)","journal-title":"Math. Program."},{"issue":"3","key":"1_CR11","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1007\/s10898-021-01014-1","volume":"80","author":"Z Zhang","year":"2021","unstructured":"Zhang, Z., Du, D., Jiang, Y., Wu, C.: Maximizing DR-submodular+ supermodular functions on the integer lattice subject to a cardinality constraint. J. Glob. Optim. 80(3), 595\u2013616 (2021)","journal-title":"J. Glob. Optim."},{"issue":"06","key":"1_CR12","doi-asserted-by":"publisher","first-page":"1950075","DOI":"10.1142\/S1793830919500757","volume":"11","author":"L Lai","year":"2019","unstructured":"Lai, L., Ni, Q., Lu, C., Huang, C., Wu, W.: Monotone submodular maximization over the bounded integer lattice with cardinality constraints. Discrete Math. Algorithms Appl. 11(06), 1950075 (2019)","journal-title":"Discrete Math. Algorithms Appl."},{"unstructured":"Sahin, A., Buhmann, J., Krause, A.: Constrained maximization of lattice submodular functions. In: ICML 2020 Workshop on Negative Dependence and Submodularity for ML, Vienna, Austria, PMLR, vol. 119 (2020)","key":"1_CR13"},{"issue":"05","key":"1_CR14","doi-asserted-by":"publisher","first-page":"2140004","DOI":"10.1142\/S0217595921400042","volume":"38","author":"Z Zhang","year":"2021","unstructured":"Zhang, Z., Guo, L., Wang, Y., Xu, D., Zhang, D.: Streaming algorithms for maximizing monotone DR-submodular functions with a cardinality constraint on the integer lattice. Asia-Pacific J. Oper. Res. 38(05), 2140004 (2021)","journal-title":"Asia-Pacific J. Oper. Res."},{"unstructured":"Hassani, H., Soltanolkotabi, M., Karbasi, A.: Gradient methods for submodular maximization. In: Advances in Neural Information Processing Systems, vol. 30 (2017)","key":"1_CR15"},{"unstructured":"Kuhnle, A., Smith, J.D., Crawford, V., Thai, M.: Fast maximization of non-submodular, monotonic functions on the integer lattice. In: International Conference on Machine Learning, pp. 2786\u20132795. PMLR (2018)","key":"1_CR16"},{"issue":"4","key":"1_CR17","doi-asserted-by":"publisher","first-page":"1208","DOI":"10.1007\/s10878-020-00558-4","volume":"39","author":"Q Nong","year":"2020","unstructured":"Nong, Q., Fang, J., Gong, S., Du, D., Feng, Y., Qu, X.: A 1\/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice. J. Comb. Optim. 39(4), 1208\u20131220 (2020)","journal-title":"J. Comb. Optim."},{"doi-asserted-by":"crossref","unstructured":"Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over social networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 189\u2013198 (2008)","key":"1_CR18","DOI":"10.1145\/1367497.1367524"},{"issue":"6","key":"1_CR19","doi-asserted-by":"publisher","first-page":"1115","DOI":"10.1145\/227683.227684","volume":"42","author":"MX Goemans","year":"1995","unstructured":"Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115\u20131145 (1995)","journal-title":"J. ACM (JACM)"},{"issue":"2\u20133","key":"1_CR20","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1016\/S0166-218X(99)00103-1","volume":"93","author":"AA Ageev","year":"1999","unstructured":"Ageev, A.A., Sviridenko, M.I.: An 0.828-approximation algorithm for the uncapacitated facility location problem. Discret. Appl. Math. 93(2\u20133), 149\u2013156 (1999)","journal-title":"Discret. Appl. Math."},{"doi-asserted-by":"crossref","unstructured":"Gharan, S.O., Vondr\u00e1k, J.: Submodular maximization by simulated annealing. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1098\u20131116. SIAM (2011)","key":"1_CR21","DOI":"10.1137\/1.9781611973082.83"},{"issue":"3","key":"1_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3184990","volume":"14","author":"N Buchbinder","year":"2018","unstructured":"Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. ACM Trans. Algorithms (TALG) 14(3), 1\u201320 (2018)","journal-title":"ACM Trans. Algorithms (TALG)"},{"unstructured":"Pan, X., Jegelka, S., Gonzalez, J.E., Bradley, J.K., Jordan, M.I.: Parallel double greedy submodular maximization. In: Advances in Neural Information Processing Systems, vol. 27 (2014)","key":"1_CR23"}],"container-title":["Lecture Notes in Computer Science","Algorithmic Aspects in Information and Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16081-3_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,17]],"date-time":"2022-09-17T22:02:42Z","timestamp":1663452162000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16081-3_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031160806","9783031160813"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-16081-3_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"18 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AAIM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Algorithmic Applications in Management","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 August 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 August 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aaim2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Springer Nature EquinOCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"69% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}