{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:22:24Z","timestamp":1726172544674},"publisher-location":"Cham","reference-count":40,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031160745"},{"type":"electronic","value":"9783031160752"}],"license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-16075-2_55","type":"book-chapter","created":{"date-parts":[[2022,8,31]],"date-time":"2022-08-31T10:02:42Z","timestamp":1661940162000},"page":"745-758","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["FI-SHAP: Explanation of\u00a0Time Series Forecasting and\u00a0Improvement of\u00a0Feature Engineering Based on\u00a0Boosting Algorithm"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8203-6677","authenticated-orcid":false,"given":"Yuyi","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Ovanes","family":"Petrosian","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Ruimin","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Kirill","family":"Krinkin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,1]]},"reference":[{"issue":"4","key":"55_CR1","doi-asserted-by":"publisher","first-page":"802","DOI":"10.1016\/j.ijforecast.2018.06.001","volume":"34","author":"S Makridakis","year":"2018","unstructured":"Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: results, findings, conclusion and way forward. Int. J. Forecast. 34(4), 802\u2013808 (2018)","journal-title":"Int. J. Forecast."},{"key":"55_CR2","doi-asserted-by":"crossref","unstructured":"Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M5 competition: background, organization, and implementation. Int. J. Forecast. (2021)","DOI":"10.1016\/j.ijforecast.2021.07.007"},{"key":"55_CR3","unstructured":"Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley (2012)"},{"key":"55_CR4","doi-asserted-by":"publisher","first-page":"184797901880867","DOI":"10.1177\/1847979018808673","volume":"10","author":"J Fattah","year":"2018","unstructured":"Fattah, J., Ezzine, L., Aman, Z., et al.: Forecasting of demand using ARIMA model. Int. J. Eng. Bus. Manag. 10, 1847979018808673 (2018)","journal-title":"Int. J. Eng. Bus. Manag."},{"issue":"8","key":"55_CR5","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997). https:\/\/doi.org\/10.1162\/neco.1997.9.8.1735","journal-title":"Neural Comput."},{"key":"55_CR6","unstructured":"Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)"},{"key":"55_CR7","doi-asserted-by":"crossref","unstructured":"Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785\u2013794 (2016)","DOI":"10.1145\/2939672.2939785"},{"key":"55_CR8","first-page":"3146","volume":"30","author":"G Ke","year":"2017","unstructured":"Ke, G., Meng, Q., Finley, T., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30, 3146\u20133154 (2017)","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"366a","key":"55_CR9","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1080\/01621459.1979.10482531","volume":"74","author":"DA Dickey","year":"1979","unstructured":"Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Statist. Assoc. 74(366a), 427\u2013431 (1979)","journal-title":"J. Am. Statist. Assoc."},{"key":"55_CR10","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.114698","volume":"173","author":"R Gao","year":"2021","unstructured":"Gao, R., Duru, O., Yuen, K.F.: High-dimensional lag structure optimization of fuzzy time series. Exp. Syst. Appl. 173, 114698 (2021)","journal-title":"Exp. Syst. Appl."},{"key":"55_CR11","doi-asserted-by":"publisher","unstructured":"ZhiYuan, C., Khoa, L.D.V., Boon, L.S.: A hybrid model of differential evolution with neural network on lag time selection for agricultural price time series forecasting\/. In: International Visual Informatics Conference, pp. 155\u2013167. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-70010-6_15","DOI":"10.1007\/978-3-319-70010-6_15"},{"issue":"2","key":"55_CR12","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1609\/aimag.v40i2.2850","volume":"40","author":"D Gunning","year":"2019","unstructured":"Gunning, D., Aha, D.: DARPA\u2019s explainable artificial intelligence (XAI) program. AI Magazine 40(2), 44\u201358 (2019)","journal-title":"AI Magazine"},{"key":"55_CR13","doi-asserted-by":"publisher","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","volume":"6","author":"A Adadi","year":"2018","unstructured":"Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138\u201352160 (2018)","journal-title":"IEEE Access"},{"key":"55_CR14","doi-asserted-by":"crossref","unstructured":"Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. (2020)","DOI":"10.1109\/TNNLS.2020.3027314"},{"key":"55_CR15","unstructured":"Das, A., Rad, P.: Opportunities and challenges in explainable artificial intelligence (XAI): a survey. arXiv preprint arXiv:2006.11371 (2020)"},{"issue":"2","key":"55_CR16","first-page":"1","volume":"15","author":"Z Zhou","year":"2021","unstructured":"Zhou, Z., Hooker, G.: Unbiased measurement of feature importance in tree-based methods. ACM Trans. Knowl. Discov. Data 15(2), 1\u201321 (2021)","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"55_CR17","unstructured":"Lundberg, S.M., Lee, S.I.: Consistent feature attribution for tree ensembles. arXiv preprint arXiv:1706.06060 (2017)"},{"key":"55_CR18","doi-asserted-by":"crossref","unstructured":"Xie, Z., Fang, G.Q., Huang, Y.H., et al.: FIST: a feature-importance sampling and tree-based method for automatic design flow parameter tuning. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 19\u201325. IEEE (2020)","DOI":"10.1109\/ASP-DAC47756.2020.9045201"},{"key":"55_CR19","doi-asserted-by":"publisher","unstructured":"Guyon, I., Elisseeff, A.: An introduction to feature extraction. In: Feature Extraction, pp. 1\u201325. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/978-3-540-35488-8_1","DOI":"10.1007\/978-3-540-35488-8_1"},{"key":"55_CR20","doi-asserted-by":"crossref","unstructured":"Kanter, J.M., Veeramachaneni, K.: Deep feature synthesis: towards automating data science endeavors. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1\u201310. IEEE (2015)","DOI":"10.1109\/DSAA.2015.7344858"},{"key":"55_CR21","doi-asserted-by":"crossref","unstructured":"Katz, G., Shin, E.C.R., Song, D.: Explorekit: automatic feature generation and selection. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 979\u2013984. IEEE (2016)","DOI":"10.1109\/ICDM.2016.0123"},{"key":"55_CR22","doi-asserted-by":"crossref","unstructured":"Kaul, A., Maheshwary, S., Pudi, V.: Autolearn-automated feature generation and selection. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 217\u2013226. IEEE (2017)","DOI":"10.1109\/ICDM.2017.31"},{"key":"55_CR23","doi-asserted-by":"crossref","unstructured":"Khurana, U., Turaga, D., Samulowitz, H., et al.: Cognito: automated feature engineering for supervised learning. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 1304\u20131307. IEEE (2016)","DOI":"10.1109\/ICDMW.2016.0190"},{"key":"55_CR24","unstructured":"Lam, H.T., Thiebaut, J.M., Sinn, M., et al.: One button machine for automating feature engineering in relational databases. arXiv preprint arXiv:1706.00327 (2017)"},{"key":"55_CR25","doi-asserted-by":"crossref","unstructured":"Cerqueira, V., Moniz, N., Soares, C.: Vest: Automatic feature engineering for forecasting. Mach. Learn. 1\u201323 (2021)","DOI":"10.1007\/s10994-021-05959-y"},{"key":"55_CR26","doi-asserted-by":"crossref","unstructured":"Li, L., Ou, Y., Wu, Y., et al.: Research on feature engineering for time series data mining. In: 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), pp. 431\u2013435. IEEE (2018)","DOI":"10.1109\/ICNIDC.2018.8525561"},{"key":"55_CR27","doi-asserted-by":"crossref","unstructured":"Zdravevski, E., Lameski, P., Mingov, R., et al.: Robust histogram-based feature engineering of time series data. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 381\u2013388. IEEE (2015)","DOI":"10.15439\/2015F420"},{"key":"55_CR28","doi-asserted-by":"crossref","unstructured":"Selvam, S.K., Rajendran, C.: tofee-tree: automatic feature engineering framework for modeling trend-cycle in time series forecasting. Neural Comput. Appl. 1\u201320 (2021)","DOI":"10.1007\/s00521-021-06438-0"},{"issue":"2","key":"55_CR29","doi-asserted-by":"publisher","first-page":"2326","DOI":"10.1109\/TSG.2019.2892595","volume":"10","author":"R Punmiya","year":"2019","unstructured":"Punmiya, R., Choe, S.: Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Trans. Smart Grid 10(2), 2326\u20132329 (2019)","journal-title":"IEEE Trans. Smart Grid"},{"key":"55_CR30","doi-asserted-by":"publisher","unstructured":"Hu, Y., An, W., Subramanian, R., Zhao, N., Gu, Y., Wu, W.: Faster clinical time series classification with filter based feature engineering tree boosting methods. In: Shaban-Nejad, A., Michalowski, M., Buckeridge, D.L. (eds.) Explainable AI in Healthcare and Medicine. SCI, vol. 914, pp. 247\u2013260. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-53352-6_23","DOI":"10.1007\/978-3-030-53352-6_23"},{"issue":"3","key":"55_CR31","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1002\/j.1538-7305.1948.tb01338.x","volume":"27","author":"CE Shannon","year":"1948","unstructured":"Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379\u2013423 (1948)","journal-title":"Bell Syst. Tech. J."},{"key":"55_CR32","doi-asserted-by":"crossref","unstructured":"Pan, F., Converse, T., Ahn, D., et al.: Feature selection for ranking using boosted trees. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 2025\u20132028 (2009)","DOI":"10.1145\/1645953.1646292"},{"key":"55_CR33","doi-asserted-by":"crossref","unstructured":"Chen, T., Wang, X., Chu, Y., et al.: T4SE-XGB: interpretable sequence-based prediction of type IV secreted effectors using eXtreme gradient boosting algorithm. Front. Microbiol. 11 (2020)","DOI":"10.3389\/fmicb.2020.580382"},{"issue":"3","key":"55_CR34","doi-asserted-by":"publisher","first-page":"1350","DOI":"10.1214\/15-AOAS848","volume":"9","author":"B Letham","year":"2015","unstructured":"Letham, B., Rudin, C., McCormick, T.H., et al.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Statist. 9(3), 1350\u20131371 (2015)","journal-title":"Ann. Appl. Statist."},{"key":"55_CR35","doi-asserted-by":"crossref","unstructured":"Caruana, R., Lou, Y., Gehrke, J., et al.: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721\u20131730 (2015)","DOI":"10.1145\/2783258.2788613"},{"key":"55_CR36","unstructured":"Agarwal, R., Frosst, N., Zhang, X., et al.: Neural additive models: interpretable machine learning with neural nets. arXiv preprint arXiv:2004.13912 (2020)"},{"key":"55_CR37","unstructured":"Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4768\u20134777 (2017)"},{"key":"55_CR38","doi-asserted-by":"crossref","unstructured":"Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135\u20131144 (2016)","DOI":"10.1145\/2939672.2939778"},{"issue":"1","key":"55_CR39","first-page":"355","volume":"7","author":"J Zou","year":"2020","unstructured":"Zou, J., Xu, F., Petrosian, O.: Explainable AI: using Shapley value to explain the anomaly detection system based on machine learning approaches. Manag. Process. Sustain. 7(1), 355\u2013360 (2020)","journal-title":"Manag. Process. Sustain."},{"key":"55_CR40","unstructured":"Lundberg, S.M., Erion, G.G., Lee, S.I.: Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 (2018)"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16075-2_55","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,31]],"date-time":"2022-08-31T10:07:32Z","timestamp":1661940452000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16075-2_55"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,1]]},"ISBN":["9783031160745","9783031160752"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-16075-2_55","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2022,9,1]]},"assertion":[{"value":"1 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IntelliSys","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Proceedings of SAI Intelligent Systems Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Amsterdam","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"intellisys2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/saiconference.com\/IntelliSys","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}