{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:37:12Z","timestamp":1726173432751},"publisher-location":"Cham","reference-count":18,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031159336"},{"type":"electronic","value":"9783031159343"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-15934-3_58","type":"book-chapter","created":{"date-parts":[[2022,9,6]],"date-time":"2022-09-06T00:02:53Z","timestamp":1662422573000},"page":"704-715","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["LogBERT-BiLSTM: Detecting Malicious Web Requests"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8951-6278","authenticated-orcid":false,"given":"Levi S.","family":"Ramos J\u00fanior","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2527-4548","authenticated-orcid":false,"given":"David","family":"Mac\u00eado","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5614-229X","authenticated-orcid":false,"given":"Adriano L. I.","family":"Oliveira","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6421-9747","authenticated-orcid":false,"given":"Cleber","family":"Zanchettin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,15]]},"reference":[{"key":"58_CR1","unstructured":"Assigning attack signatures to security policies, February 2022. https:\/\/techdocs.f5.com\/kb\/en-us\/products\/big-ip_asm\/manuals\/product\/asm-bot-and-attack-signatures-13-0-0\/1.html"},{"key":"58_CR2","unstructured":"Althubiti, S., Yuan, X., Esterline, A.: Analyzing http requests for web intrusion detection, October 2017"},{"key":"58_CR3","unstructured":"Chen, Z., Liu, J., Gu, W., Su, Y., Lyu, M.R.: Experience report: deep learning-based system log analysis for anomaly detection. CoRR abs\/2107.05908 (2021). https:\/\/arxiv.org\/abs\/2107.05908"},{"key":"58_CR4","doi-asserted-by":"publisher","unstructured":"Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis from system logs through deep learning, pp. 1285\u20131298 (2017). https:\/\/doi.org\/10.1145\/3133956.3134015","DOI":"10.1145\/3133956.3134015"},{"key":"58_CR5","doi-asserted-by":"publisher","unstructured":"Guo, H., Yuan, S., Wu, X.: LogBERT: log anomaly detection via BERT. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138 (2021). https:\/\/doi.org\/10.1109\/IJCNN52387.2021.9534113","DOI":"10.1109\/IJCNN52387.2021.9534113"},{"key":"58_CR6","doi-asserted-by":"publisher","unstructured":"Ito, M., Iyatomi, H.: Web application firewall using character-level convolutional neural network, pp. 103\u2013106 (2018). https:\/\/doi.org\/10.1109\/CSPA.2018.8368694","DOI":"10.1109\/CSPA.2018.8368694"},{"key":"58_CR7","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification. CoRR abs\/1408.5882 (2014). http:\/\/arxiv.org\/abs\/1408.5882"},{"key":"58_CR8","doi-asserted-by":"publisher","unstructured":"Kuang, X., et al.: DeepWAF: detecting web attacks based on CNN and LSTM models (2019). https:\/\/doi.org\/10.1007\/978-3-030-37352-8_11","DOI":"10.1007\/978-3-030-37352-8_11"},{"key":"58_CR9","unstructured":"Le, V., Zhang, H.: Log-based anomaly detection without log parsing. CoRR abs\/2108.01955 (2021). https:\/\/arxiv.org\/abs\/2108.01955"},{"key":"58_CR10","doi-asserted-by":"publisher","unstructured":"Lu, S., Wei, X., Li, Y., Wang, L.: Detecting anomaly in big data system logs using convolutional neural network (2018). https:\/\/doi.org\/10.1109\/DASC\/PiCom\/DataCom\/CyberSciTec.2018.00037","DOI":"10.1109\/DASC\/PiCom\/DataCom\/CyberSciTec.2018.00037"},{"key":"58_CR11","doi-asserted-by":"crossref","unstructured":"Meng, W., et al.: LogAnomaly: unsupervised detection of sequential and quantitative anomalies in unstructured logs. In: IJCAI (2019)","DOI":"10.24963\/ijcai.2019\/658"},{"key":"58_CR12","first-page":"489","volume":"9","author":"V Odumuyiwa","year":"2020","unstructured":"Odumuyiwa, V., Chibueze, A.: Automatic detection of http injection attacks using convolutional neural network and deep neural network. J. Cyber Secur. Mobil. 9, 489\u2013514 (2020)","journal-title":"J. Cyber Secur. Mobil."},{"key":"58_CR13","doi-asserted-by":"publisher","unstructured":"Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs (2007). https:\/\/doi.org\/10.1109\/DSN.2007.103","DOI":"10.1109\/DSN.2007.103"},{"key":"58_CR14","unstructured":"Ra\u00efssi, C., Brissaud, J., Dray, G., Poncelet, P., Roche, M., Teisseire, M.: Web analyzing traffic challenge: description and results (2007)"},{"key":"58_CR15","doi-asserted-by":"publisher","unstructured":"Torrano-Gimenez, C., Perez-Villegas, A., Alvarez, G.: A self-learning anomaly-based web application firewall, vol. 63, pp. 85\u201392, January 2009. https:\/\/doi.org\/10.1007\/978-3-642-04091-7_11","DOI":"10.1007\/978-3-642-04091-7_11"},{"key":"58_CR16","unstructured":"Vaswani, A., et al.: Attention is all you need. CoRR abs\/1706.03762 (2017). http:\/\/arxiv.org\/abs\/1706.03762"},{"key":"58_CR17","doi-asserted-by":"publisher","unstructured":"Xuan, C., Dinh, H., Victor, T.: Malicious url detection based on machine learning. Int. J. Adv. Comput. Sci. Appl. (2020). https:\/\/doi.org\/10.14569\/IJACSA.2020.0110119","DOI":"10.14569\/IJACSA.2020.0110119"},{"key":"58_CR18","doi-asserted-by":"publisher","unstructured":"Yu, L., et al.: Detecting malicious web requests using an enhanced textCNN (2020). https:\/\/doi.org\/10.1109\/COMPSAC48688.2020.0-167","DOI":"10.1109\/COMPSAC48688.2020.0-167"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-15934-3_58","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,14]],"date-time":"2022-09-14T06:09:39Z","timestamp":1663135779000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-15934-3_58"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031159336","9783031159343"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-15934-3_58","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"15 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bristol","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"561","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"255","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}