{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:55:36Z","timestamp":1726174536954},"publisher-location":"Cham","reference-count":43,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031155642"},{"type":"electronic","value":"9783031155659"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-15565-9_8","type":"book-chapter","created":{"date-parts":[[2022,9,22]],"date-time":"2022-09-22T10:15:45Z","timestamp":1663841745000},"page":"124-142","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Semantic Web-Based Interoperability for\u00a0Intelligent Agents with\u00a0PSyKE"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0532-6777","authenticated-orcid":false,"given":"Federico","family":"Sabbatini","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1841-8996","authenticated-orcid":false,"given":"Giovanni","family":"Ciatto","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6655-3869","authenticated-orcid":false,"given":"Andrea","family":"Omicini","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,23]]},"reference":[{"issue":"6","key":"8_CR1","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1016\/0950-7051(96)81920-4","volume":"8","author":"R Andrews","year":"1995","unstructured":"Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8(6), 373\u2013389 (1995). https:\/\/doi.org\/10.1016\/0950-7051(96)81920-4","journal-title":"Knowl.-Based Syst."},{"key":"8_CR2","doi-asserted-by":"publisher","unstructured":"Azcarraga, A., Liu, M.D., Setiono, R.: Keyword extraction using backpropagation neural networks and rule extraction. In: The 2012 International Joint Conference on Neural Networks (IJCNN 2012), pp. 1\u20137. IEEE (2012). https:\/\/doi.org\/10.1109\/IJCNN.2012.6252618","DOI":"10.1109\/IJCNN.2012.6252618"},{"key":"8_CR3","unstructured":"Baesens, B., Setiono, R., De Lille, V., Viaene, S., Vanthienen, J.: Building credit-risk evaluation expert systems using neural network rule extraction and decision tables. In: Storey, V.C., Sarkar, S., DeGross, J.I. (eds.) ICIS 2001 Proceedings, pp. 159\u2013168. Association for Information Systems (2001). http:\/\/aisel.aisnet.org\/icis2001\/20"},{"issue":"3","key":"8_CR4","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1287\/mnsc.49.3.312.12739","volume":"49","author":"B Baesens","year":"2003","unstructured":"Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit-risk evaluation. Manage. Sci. 49(3), 312\u2013329 (2003). https:\/\/doi.org\/10.1287\/mnsc.49.3.312.12739","journal-title":"Manage. Sci."},{"key":"8_CR5","doi-asserted-by":"crossref","unstructured":"Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34\u201343 (2001). https:\/\/www.scientificamerican.com\/article\/the-semantic-web\/","DOI":"10.1038\/scientificamerican0501-34"},{"key":"8_CR6","unstructured":"Bologna, G., Pellegrini, C.: Three medical examples in neural network rule extraction. Phys. Med. 13, 183\u2013187 (1997). https:\/\/archive-ouverte.unige.ch\/unige:121360"},{"key":"8_CR7","unstructured":"Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)"},{"key":"8_CR8","unstructured":"Ciatto, G., Calegari, R., Omicini, A., Calvaresi, D.: Towards XMAS: eXplainability through Multi-Agent Systems. In: Savaglio, C., Fortino, G., Ciatto, G., Omicini, A. (eds.) AI &IoT 2019 - Artificial Intelligence and Internet of Things 2019, CEUR Workshop Proceedings, vol. 2502, pp. 40\u201353. Sun SITE Central Europe, RWTH Aachen University (2019), http:\/\/ceur-ws.org\/Vol-2502\/paper3.pdf"},{"key":"8_CR9","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-51924-7_1","volume-title":"Explainable, Transparent Autonomous Agents and Multi-Agent Systems","author":"G Ciatto","year":"2020","unstructured":"Ciatto, G., Schumacher, M.I., Omicini, A., Calvaresi, D.: Agent-based explanations in AI: towards an abstract framework. In: Calvaresi, D., Najjar, A., Winikoff, M., Fr\u00e4mling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 3\u201320. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-51924-7_1"},{"key":"8_CR10","doi-asserted-by":"publisher","unstructured":"Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Machine Learning Proceedings 1994, pp. 37\u201345. Elsevier (1994). https:\/\/doi.org\/10.1016\/B978-1-55860-335-6.50013-1","DOI":"10.1016\/B978-1-55860-335-6.50013-1"},{"key":"8_CR11","unstructured":"Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp. 24\u201330. The MIT Press (1996). http:\/\/papers.nips.cc\/paper\/1152-extracting-tree-structured-representations-of-trained-networks.pdf"},{"issue":"1","key":"8_CR12","doi-asserted-by":"publisher","first-page":"195","DOI":"10.3233\/SW-200388","volume":"11","author":"C d\u2019Amato","year":"2020","unstructured":"d\u2019Amato, C.: Machine learning for the semantic web: lessons learnt and next research directions. Semant. Web 11(1), 195\u2013203 (2020). https:\/\/doi.org\/10.3233\/SW-200388","journal-title":"Semant. Web"},{"key":"8_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1004","DOI":"10.1007\/978-3-540-73007-1_121","volume-title":"Computational and Ambient Intelligence","author":"L Franco","year":"2007","unstructured":"Franco, L., Subirats, J.L., Molina, I., Alba, E., Jerez, J.M.: Early breast cancer prognosis prediction and rule extraction using a new constructive neural network algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Gra\u00f1a, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1004\u20131011. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-73007-1_121"},{"issue":"1","key":"8_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2594473.2594475","volume":"15","author":"AA Freitas","year":"2014","unstructured":"Freitas, A.A.: Comprehensible classification models: a position paper. ACM SIGKDD Explor. Newsl. 15(1), 1\u201310 (2014). https:\/\/doi.org\/10.1145\/2594473.2594475","journal-title":"ACM SIGKDD Explor. Newsl."},{"issue":"3","key":"8_CR15","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1007\/s10817-014-9305-1","volume":"53","author":"B Glimm","year":"2014","unstructured":"Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reason. 53(3), 245\u2013269 (2014). https:\/\/doi.org\/10.1007\/s10817-014-9305-1","journal-title":"J. Autom. Reason."},{"issue":"5","key":"8_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3236009","volume":"51","author":"R Guidotti","year":"2018","unstructured":"Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1\u201342 (2018). https:\/\/doi.org\/10.1145\/3236009","journal-title":"ACM Comput. Surv."},{"key":"8_CR17","doi-asserted-by":"publisher","unstructured":"Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.: XAI - explainable artificial intelligence. Sci. Robot. 4(37) (2019). https:\/\/doi.org\/10.1126\/scirobotics.aay7120","DOI":"10.1126\/scirobotics.aay7120"},{"issue":"3","key":"8_CR18","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1016\/s0933-3657(00)00064-6","volume":"20","author":"Y Hayashi","year":"2000","unstructured":"Hayashi, Y., Setiono, R., Yoshida, K.: A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders. Artif. Intell. Med. 20(3), 205\u2013216 (2000). https:\/\/doi.org\/10.1016\/s0933-3657(00)00064-6","journal-title":"Artif. Intell. Med."},{"key":"8_CR19","unstructured":"Hitzler, P., Kr\u00f6tzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web ontology language primer (second edition). W3C Recommendation 11 December 2012 (2012). https:\/\/www.w3.org\/TR\/owl2-primer"},{"issue":"1\u20132","key":"8_CR20","doi-asserted-by":"publisher","first-page":"111","DOI":"10.3233\/SW-2010-0004","volume":"1","author":"R Hoekstra","year":"2010","unstructured":"Hoekstra, R.: The knowledge reengineering bottleneck. Semant. Web 1(1\u20132), 111\u2013115 (2010). https:\/\/doi.org\/10.3233\/SW-2010-0004","journal-title":"Semant. Web"},{"key":"8_CR21","doi-asserted-by":"publisher","unstructured":"Hofmann, A., Schmitz, C., Sick, B.: Rule extraction from neural networks for intrusion detection in computer networks. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1259\u20131265. IEEE (2003). https:\/\/doi.org\/10.1109\/ICSMC.2003.1244584","DOI":"10.1109\/ICSMC.2003.1244584"},{"key":"8_CR22","unstructured":"Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission 21 May 2004 (2004). https:\/\/www.w3.org\/Submission\/SWRL"},{"key":"8_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1007\/11823728_26","volume-title":"Data Warehousing and Knowledge Discovery","author":"J Huysmans","year":"2006","unstructured":"Huysmans, J., Baesens, B., Vanthienen, J.: ITER: an algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270\u2013279. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11823728_26"},{"issue":"1","key":"8_CR24","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1016\/j.dss.2010.12.003","volume":"51","author":"J Huysmans","year":"2011","unstructured":"Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1), 141\u2013154 (2011). https:\/\/doi.org\/10.1016\/j.dss.2010.12.003","journal-title":"Decis. Support Syst."},{"key":"8_CR25","doi-asserted-by":"publisher","first-page":"812","DOI":"10.1007\/978-0-387-30164-8_680","volume-title":"Encyclopedia of Machine Learning","author":"N Lachiche","year":"2010","unstructured":"Lachiche, N.: Propositionalization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 812\u2013817. Springer, Boston (2010). https:\/\/doi.org\/10.1007\/978-0-387-30164-8_680"},{"key":"8_CR26","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.artmed.2017.07.002","volume":"80","author":"J Lamy","year":"2017","unstructured":"Lamy, J.: Owlready: ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies. Artif. Intell. Med. 80, 11\u201328 (2017). https:\/\/doi.org\/10.1016\/j.artmed.2017.07.002","journal-title":"Artif. Intell. Med."},{"issue":"3","key":"8_CR27","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1145\/3236386.3241340","volume":"16","author":"ZC Lipton","year":"2018","unstructured":"Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31\u201357 (2018). https:\/\/doi.org\/10.1145\/3236386.3241340","journal-title":"Queue"},{"key":"8_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"248","DOI":"10.1007\/3-540-62591-7_38","volume-title":"Cooperative Information Agents","author":"Z Maamar","year":"1997","unstructured":"Maamar, Z., Moulin, B.: Interoperability of distributed and heterogeneous systems based on software agent-oriented frameworks. In: Kandzia, P., Klusch, M. (eds.) CIA 1997. LNCS, vol. 1202, pp. 248\u2013259. Springer, Heidelberg (1997). https:\/\/doi.org\/10.1007\/3-540-62591-7_38"},{"key":"8_CR29","unstructured":"Manola, F., Miller, E., McBride, B.: Resource description framework (RDF) primer. W3C Recommendation 10 February 2004 (2004). https:\/\/www.w3.org\/TR\/rdf-primer"},{"key":"8_CR30","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1613\/jair.2811","volume":"36","author":"B Motik","year":"2009","unstructured":"Motik, B., Shearer, R.D.C., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36, 165\u2013228 (2009). https:\/\/doi.org\/10.1613\/jair.2811","journal-title":"J. Artif. Intell. Res."},{"key":"8_CR31","doi-asserted-by":"publisher","unstructured":"Murphy, P.M., Pazzani, M.J.: ID2-of-3: constructive induction of M-of-N concepts for discriminators in decision trees. In: Machine Learning Proceedings 1991, pp. 183\u2013187. Elsevier (1991). https:\/\/doi.org\/10.1016\/B978-1-55860-200-7.50040-4. 8th International Conference (ML 1991), Evanston, IL, USA","DOI":"10.1016\/B978-1-55860-200-7.50040-4"},{"issue":"3","key":"8_CR32","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1016\/S0020-7373(87)80053-6","volume":"27","author":"JR Quinlan","year":"1987","unstructured":"Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221\u2013234 (1987). https:\/\/doi.org\/10.1016\/S0020-7373(87)80053-6","journal-title":"Int. J. Man Mach. Stud."},{"key":"8_CR33","unstructured":"Quinlan, J.R.: C4.5: Programming for Machine Learning. Morgan Kauffmann (1993). https:\/\/dl.acm.org\/doi\/10.5555\/152181"},{"issue":"5","key":"8_CR34","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1038\/s42256-019-0048-x","volume":"1","author":"C Rudin","year":"2019","unstructured":"Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206\u2013215 (2019). https:\/\/doi.org\/10.1038\/s42256-019-0048-x","journal-title":"Nat. Mach. Intell."},{"key":"8_CR35","doi-asserted-by":"crossref","unstructured":"Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: On the design of PSyKE: a platform for symbolic knowledge extraction. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2021\u201322nd Workshop \u201cFrom Objects to Agents\u201d. CEUR Workshop Proceedings, vol. 2963, pp. 29\u201348. Sun SITE Central Europe, RWTH Aachen University (2021). http:\/\/ceur-ws.org\/Vol-2963\/paper14.pdf. 22nd Workshop \u201cFrom Objects to Agents\u201d (WOA 2021), Bologna, Italy, 1\u20133 September Proceedings (2021)","DOI":"10.3233\/IA-220141"},{"key":"8_CR36","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1007\/978-3-030-82017-6_2","volume-title":"Explainable and Transparent AI and Multi-Agent Systems","author":"F Sabbatini","year":"2021","unstructured":"Sabbatini, F., Ciatto, G., Omicini, A.: GridEx: an algorithm for knowledge extraction from black-box regressors. In: Calvaresi, D., Najjar, A., Winikoff, M., Fr\u00e4mling, K. (eds.) EXTRAAMAS 2021. LNCS (LNAI), vol. 12688, pp. 18\u201338. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-82017-6_2"},{"key":"8_CR37","doi-asserted-by":"publisher","unstructured":"Saleem, A., Honeth, N., Nordstr\u00f6m, L.: A case study of multi-agent interoperability in IEC 61850 environments. In: IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Europe 2010, 11\u201313 October 2010, Gothenburg, Sweden, pp. 1\u20138. IEEE (2010). https:\/\/doi.org\/10.1109\/ISGTEUROPE.2010.5638876","DOI":"10.1109\/ISGTEUROPE.2010.5638876"},{"issue":"04","key":"8_CR38","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1142\/S0129065711002821","volume":"21","author":"R Setiono","year":"2011","unstructured":"Setiono, R., Baesens, B., Mues, C.: Rule extraction from minimal neural networks for credit card screening. Int. J. Neural Syst. 21(04), 265\u2013276 (2011). https:\/\/doi.org\/10.1142\/S0129065711002821","journal-title":"Int. J. Neural Syst."},{"key":"8_CR39","unstructured":"Shearer, R.D.C., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In: Dolbear, C., Ruttenberg, A., Sattler, U. (eds.) Proceedings of the Fifth OWLED Workshop on OWL: Experiences and Directions, Collocated with the 7th International Semantic Web Conference (ISWC-2008), Karlsruhe, Germany, 26\u201327 October 2008. CEUR Workshop Proceedings, vol. 432. CEUR-WS.org (2008). http:\/\/ceur-ws.org\/Vol-432\/owled2008eu_submission_12.pdf"},{"key":"8_CR40","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1222","DOI":"10.1007\/978-3-540-76890-6_50","volume-title":"On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops","author":"K Siorpaes","year":"2007","unstructured":"Siorpaes, K., Hepp, M.: OntoGame: towards overcoming the incentive bottleneck in ontology building. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007, Part II. LNCS, vol. 4806, pp. 1222\u20131232. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-76890-6_50"},{"key":"8_CR41","unstructured":"Sirin, E., Parsia, B.: Pellet: an OWL DL reasoner. In: Haarslev, V., M\u00f6ller, R. (eds.) Proceedings of the 2004 International Workshop on Description Logics (DL2004), Whistler, British Columbia, Canada, 6\u20138 June 2004. CEUR Workshop Proceedings, vol. 104. CEUR-WS.org (2004). http:\/\/ceur-ws.org\/Vol-104\/30Sirin-Parsia.pdf"},{"issue":"2","key":"8_CR42","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1016\/j.websem.2007.03.004","volume":"5","author":"E Sirin","year":"2007","unstructured":"Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51\u201353 (2007). https:\/\/doi.org\/10.1016\/j.websem.2007.03.004","journal-title":"J. Web Semant."},{"key":"8_CR43","unstructured":"Steiner, M.T.A., Steiner\u00a0Neto, P.J., Soma, N.Y., Shimizu, T., Nievola, J.C.: Using neural network rule extraction for credit-risk evaluation. Int. J. Comput. Sci. Netw. Secur. 6(5A), 6\u201316 (2006). http:\/\/paper.ijcsns.org\/07_book\/200605\/200605A02.pdf"}],"container-title":["Lecture Notes in Computer Science","Explainable and Transparent AI and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-15565-9_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,22]],"date-time":"2022-09-22T10:19:45Z","timestamp":1663841985000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-15565-9_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031155642","9783031155659"],"references-count":43,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-15565-9_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"23 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EXTRAAMAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 May 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 May 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"extraamas2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/extraamas.ehealth.hevs.ch\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"14","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"56% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}