{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T04:20:36Z","timestamp":1727842836399},"publisher-location":"Cham","reference-count":38,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031149221"},{"type":"electronic","value":"9783031149238"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-14923-8_4","type":"book-chapter","created":{"date-parts":[[2022,8,13]],"date-time":"2022-08-13T12:06:36Z","timestamp":1660392396000},"page":"48-62","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Algorithmic Bias and\u00a0Fairness in\u00a0Case-Based Reasoning"],"prefix":"10.1007","author":[{"given":"William","family":"Blanzeisky","sequence":"first","affiliation":[]},{"given":"Barry","family":"Smyth","sequence":"additional","affiliation":[]},{"given":"P\u00e1draig","family":"Cunningham","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,8,14]]},"reference":[{"key":"4_CR1","doi-asserted-by":"crossref","unstructured":"Montalvo, I., Izquierdo, J., P\u00e9rez-Garc\u00eda, R., Herrera, M.: Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems. Eng. Appl. Artif. Intell. 23(5), 727\u2013735 (2010). Advances in metaheuristics for hard optimization: new trends and case studies","DOI":"10.1016\/j.engappai.2010.01.015"},{"issue":"4","key":"4_CR2","doi-asserted-by":"publisher","first-page":"1060","DOI":"10.1007\/s10618-017-0506-1","volume":"31","author":"I \u017dliobait\u0117","year":"2017","unstructured":"\u017dliobait\u0117, I.: Measuring discrimination in algorithmic decision making. Data Min. Knowl. Discov. 31(4), 1060\u20131089 (2017). https:\/\/doi.org\/10.1007\/s10618-017-0506-1","journal-title":"Data Min. Knowl. Discov."},{"key":"4_CR3","doi-asserted-by":"crossref","unstructured":"Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT 2021, pp. 610\u2013623. Association for Computing Machinery, New York (2021)","DOI":"10.1145\/3442188.3445922"},{"issue":"1","key":"4_CR4","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1177\/0049124118782533","volume":"50","author":"R Berk","year":"2021","unstructured":"Berk, R., Heidari, H., Jabbari, S., Kearns, M., Roth, A.: Fairness in criminal justice risk assessments: the state of the art. Sociol. Methods Res. 50(1), 3\u201344 (2021)","journal-title":"Sociol. Methods Res."},{"key":"4_CR5","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1007\/978-3-030-93736-2_41","volume-title":"Machine Learning and Principles and Practice of Knowledge Discovery in Databases","author":"W Blanzeisky","year":"2021","unstructured":"Blanzeisky, W., Cunningham, P.: Algorithmic factors influencing bias in machine learning. In: Kamp, M. (ed.) Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 559\u2013574. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-93736-2_41"},{"key":"4_CR6","unstructured":"Blanzeisky, W., Cunningham, P., Kennedy, K.: Introducing a family of synthetic datasets for research on bias in machine learning. CoRR abs\/2107.08928 (2021)"},{"key":"4_CR7","doi-asserted-by":"crossref","unstructured":"Castelnovo, A., Crupi, R., Greco, G., Regoli, D.: The zoo of fairness metrics in machine learning (2021)","DOI":"10.21203\/rs.3.rs-1162350\/v1"},{"key":"4_CR8","unstructured":"Caton, S., Haas, C.: Fairness in machine learning: a survey. arXiv preprint arXiv:2010.04053 (2020)"},{"key":"4_CR9","doi-asserted-by":"crossref","unstructured":"Coello, C., Lechuga, M.: MOPSO: a proposal for multiple objective particle swarm optimization, vol. 2, pp. 1051\u20131056 (2002)","DOI":"10.1109\/CEC.2002.1004388"},{"key":"4_CR10","unstructured":"Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical review of fair machine learning (2018)"},{"key":"4_CR11","doi-asserted-by":"crossref","unstructured":"Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C.: Explaining models: an empirical study of how explanations impact fairness judgment. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 275\u2013285 (2019)","DOI":"10.1145\/3301275.3302310"},{"key":"4_CR12","doi-asserted-by":"crossref","unstructured":"Dressel, J., Farid, H.: The accuracy, fairness, and limits of predicting recidivism. Sci. Adv. 4(1), eaao5580 (2018)","DOI":"10.1126\/sciadv.aao5580"},{"issue":"1","key":"4_CR13","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1109\/TCIAIG.2014.2369345","volume":"8","author":"MS Emigh","year":"2014","unstructured":"Emigh, M.S., Kriminger, E.G., Brockmeier, A.J., Pr\u00edncipe, J.C., Pardalos, P.M.: Reinforcement learning in video games using nearest neighbor interpolation and metric learning. IEEE Trans. Comput. Intell. AI Games 8(1), 56\u201366 (2014)","journal-title":"IEEE Trans. Comput. Intell. AI Games"},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259\u2013268 (2015)","DOI":"10.1145\/2783258.2783311"},{"key":"4_CR15","doi-asserted-by":"crossref","unstructured":"Holstein, K., Wortman Vaughan, J., Daum\u00e9 III, H., Dudik, M., Wallach, H.: Improving fairness in machine learning systems: what do industry practitioners need? In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1\u201316 (2019)","DOI":"10.1145\/3290605.3300830"},{"key":"4_CR16","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1007\/978-3-030-01081-2_11","volume-title":"Case-Based Reasoning Research and Development","author":"V Jalali","year":"2018","unstructured":"Jalali, V., Leake, D.: Harnessing hundreds of millions of cases: case-based prediction at industrial scale. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 153\u2013169. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01081-2_11"},{"key":"4_CR17","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1007\/978-3-642-33486-3_3","volume-title":"Machine Learning and Knowledge Discovery in Databases","author":"T Kamishima","year":"2012","unstructured":"Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with prejudice remover regularizer. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 35\u201350. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-33486-3_3"},{"key":"4_CR18","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/978-3-030-29249-2_11","volume-title":"Case-Based Reasoning Research and Development","author":"MT Keane","year":"2019","unstructured":"Keane, M.T., Kenny, E.M.: How case-based reasoning explains neural networks: a theoretical analysis of XAI using Post-Hoc explanation-by-example from a survey of ANN-CBR twin-systems. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 155\u2013171. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-29249-2_11"},{"key":"4_CR19","doi-asserted-by":"publisher","first-page":"760","DOI":"10.1007\/978-0-387-30164-8_630","volume-title":"Encyclopedia of Machine Learning","author":"J Kennedy","year":"2010","unstructured":"Kennedy, J.: Particle Swarm Optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760\u2013766. Springer, Boston (2010). https:\/\/doi.org\/10.1007\/978-0-387-30164-8_630"},{"key":"4_CR20","unstructured":"Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, vol. 96, pp. 202\u2013207 (1996)"},{"key":"4_CR21","doi-asserted-by":"publisher","unstructured":"Larsen, R., Jouffroy, J., Lassen, B.: On the premature convergence of particle swarm optimization (2016). https:\/\/doi.org\/10.1109\/ECC.2016.7810572","DOI":"10.1109\/ECC.2016.7810572"},{"key":"4_CR22","unstructured":"Limlawan, V., Pongchairerks, P.: A PSO with ability to avoid being trapped in a local optimum a PSO with ability to avoid being trapped in a local optimum (2010)"},{"key":"4_CR23","doi-asserted-by":"crossref","unstructured":"Lin, Y.B., Ping, X.O., Ho, T.W., Lai, F.: Processing and analysis of imbalanced liver cancer patient data by case-based reasoning. In: The 7th 2014 Biomedical Engineering International Conference, pp. 1\u20135. IEEE (2014)","DOI":"10.1109\/BMEiCON.2014.7017371"},{"key":"4_CR24","doi-asserted-by":"crossref","unstructured":"Ma, R.J., Yu, N.Y., Hu, J.Y.: Application of particle swarm optimization algorithm in the heating system planning problem. Sci. World J. 2013, 718345 (2013)","DOI":"10.1155\/2013\/718345"},{"key":"4_CR25","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1016\/j.neunet.2011.07.002","volume":"25","author":"JM Malof","year":"2012","unstructured":"Malof, J.M., Mazurowski, M.A., Tourassi, G.D.: The effect of class imbalance on case selection for case-based classifiers: an empirical study in the context of medical decision support. Neural Netw. 25, 141\u2013145 (2012)","journal-title":"Neural Netw."},{"issue":"6","key":"4_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3457607","volume":"54","author":"N Mehrabi","year":"2021","unstructured":"Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6), 1\u201335 (2021). https:\/\/doi.org\/10.1145\/3457607","journal-title":"ACM Comput. Surv."},{"key":"4_CR27","doi-asserted-by":"publisher","first-page":"4645","DOI":"10.1007\/s00500-019-04226-6","volume":"24","author":"F Moslehi","year":"2020","unstructured":"Moslehi, F., Haeri, A., Mart\u00ednez-\u00c1lvarez, F.: A novel hybrid GA-PSO framework for mining quantitative association rules. Soft Comput. 24, 4645\u20134666 (2020)","journal-title":"Soft Comput."},{"key":"4_CR28","unstructured":"Nicol\u00e0s Sans, R., Vernet Bellet, D., Golobardes, E., Fornells Herrera, A., de la Torre Frade, F., Puig, S.: Applying distance metric learning in a collaborative melanoma diagnosis system with case-based reasoning. In: Proceedings of the 14th Workshop on Case-based reasoning at the 29th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (2011)"},{"key":"4_CR29","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"294","DOI":"10.1007\/3-540-36079-4_26","volume-title":"Topics in Artificial Intelligence","author":"S Onta\u00f1\u00f3n","year":"2002","unstructured":"Onta\u00f1\u00f3n, S., Plaza, E.: Cooperative case bartering for case-based reasoning agents. In: Escrig, M.T., Toledo, F., Golobardes, E. (eds.) CCIA 2002. LNCS (LNAI), vol. 2504, pp. 294\u2013308. Springer, Heidelberg (2002). https:\/\/doi.org\/10.1007\/3-540-36079-4_26"},{"key":"4_CR30","unstructured":"Richter, M.M., Michael, M.: Knowledge containers. In: Readings in Case-Based Reasoning (2003)"},{"key":"4_CR31","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1007\/978-3-540-28631-8_29","volume-title":"Advances in Case-Based Reasoning","author":"TR Roth-Berghofer","year":"2004","unstructured":"Roth-Berghofer, T.R.: Explanations and case-based reasoning: foundational issues. In: Funk, P., Gonz\u00e1lez Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 389\u2013403. Springer, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-540-28631-8_29"},{"issue":"2","key":"4_CR32","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/s10462-005-4607-7","volume":"24","author":"F S\u00f8rmo","year":"2005","unstructured":"S\u00f8rmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning-perspectives and goals. Artif. Intell. Rev. 24(2), 109\u2013143 (2005)","journal-title":"Artif. Intell. Rev."},{"issue":"2","key":"4_CR33","doi-asserted-by":"publisher","first-page":"534","DOI":"10.1007\/s10618-014-0356-z","volume":"29","author":"F Wang","year":"2014","unstructured":"Wang, F., Sun, J.: Survey on distance metric learning and dimensionality reduction in data mining. Data Min. Knowl. Disc. 29(2), 534\u2013564 (2014). https:\/\/doi.org\/10.1007\/s10618-014-0356-z","journal-title":"Data Min. Knowl. Disc."},{"key":"4_CR34","unstructured":"Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10(2) (2009)"},{"key":"4_CR35","unstructured":"Woodworth, B., Gunasekar, S., Ohannessian, M.I., Srebro, N.: Learning non-discriminatory predictors. In: Conference on Learning Theory, pp. 1920\u20131953. PMLR (2017)"},{"key":"4_CR36","unstructured":"Xing, E., Jordan, M., Russell, S.J., Ng, A.: Distance metric learning with application to clustering with side-information. In: Advances in Neural Information Processing Systems 15 (2002)"},{"key":"4_CR37","unstructured":"Zliobaite, I.: Fairness-aware machine learning: a perspective. arXiv preprint arXiv:1708.00754 (2017)"},{"issue":"3","key":"4_CR38","doi-asserted-by":"publisher","first-page":"635","DOI":"10.1007\/s40747-020-00159-y","volume":"6","author":"A \u00dcnal","year":"2020","unstructured":"\u00dcnal, A., Kayakutlu, G.: Multi-objective particle swarm optimization with random immigrants. Complex Intell. Syst. 6(3), 635\u2013650 (2020). https:\/\/doi.org\/10.1007\/s40747-020-00159-y","journal-title":"Complex Intell. Syst."}],"container-title":["Lecture Notes in Computer Science","Case-Based Reasoning Research and Development"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-14923-8_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T17:27:50Z","timestamp":1727803670000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-14923-8_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031149221","9783031149238"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-14923-8_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"14 August 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCBR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Case-Based Reasoning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Nancy","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccbr2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccbr2022.loria.fr\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"68","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}