{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:03:24Z","timestamp":1726171404820},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031149221"},{"type":"electronic","value":"9783031149238"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-14923-8_11","type":"book-chapter","created":{"date-parts":[[2022,8,13]],"date-time":"2022-08-13T12:06:36Z","timestamp":1660392396000},"page":"159-174","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Deep Learning Approach to\u00a0Solving Morphological Analogies"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2315-7732","authenticated-orcid":false,"given":"Esteban","family":"Marquer","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4132-1068","authenticated-orcid":false,"given":"Safa","family":"Alsaidi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6773-9983","authenticated-orcid":false,"given":"Amandine","family":"Decker","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4586-9511","authenticated-orcid":false,"given":"Pierre-Alexandre","family":"Murena","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2316-7623","authenticated-orcid":false,"given":"Miguel","family":"Couceiro","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,8,14]]},"reference":[{"key":"11_CR1","doi-asserted-by":"crossref","unstructured":"Alsaidi, S., Decker, A., Lay, P., Marquer, E., Murena, P.A., Couceiro, M.: A neural approach for detecting morphological analogies. In: IEEE 8th DSAA, pp. 1\u201310 (2021)","DOI":"10.1109\/DSAA53316.2021.9564186"},{"key":"11_CR2","doi-asserted-by":"publisher","unstructured":"Alsaidi, S., Decker, A., Lay, P., Marquer, E., Murena, P.A., Couceiro, M.: On the transferability of neural models of morphological analogies. In: AIMLAI, ECML PKDD, vol. 1524, pp. 76\u201389 (2021). https:\/\/doi.org\/10.1007\/978-3-030-93736-2_7","DOI":"10.1007\/978-3-030-93736-2_7"},{"key":"11_CR3","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1016\/j.knosys.2011.06.022","volume":"29","author":"M Bayoudh","year":"2012","unstructured":"Bayoudh, M., Prade, H., Richard, G.: Evaluation of analogical proportions through kolmogorov complexity. Knowl.-Based Syst. 29, 20\u201330 (2012)","journal-title":"Knowl.-Based Syst."},{"key":"11_CR4","unstructured":"Chen, D., Peterson, J.C., Griffiths, T.: Evaluating vector-space models of analogy. In: 39th CogSci, pp. 1746\u20131751. Cognitive Science Society (2017)"},{"key":"11_CR5","doi-asserted-by":"crossref","unstructured":"Cotterell, R., Kirov, C., Sylak-Glassman, J., Yarowsky, D., Eisner, J., Hulden, M.: The sigmorphon 2016 shared task-morphological reinflection. In: SIGMORPHON 2016. ACL (2016)","DOI":"10.18653\/v1\/W16-2002"},{"key":"11_CR6","unstructured":"Drozd, A., Gladkova, A., Matsuoka, S.: Word embeddings, analogies, and machine learning: Beyond king - man + woman = queen. In: 26th COLING, pp. 3519\u20133530 (2016)"},{"key":"11_CR7","unstructured":"Eddington, D., Lachler, J.: A computational analysis of navajo verb stems, pp. 143\u2013161. CSLI Publications (2010)"},{"key":"11_CR8","unstructured":"Fam, R., Lepage, Y.: Morphological predictability of unseen words using computational analogy. In: 24th ICCBR Workshops, pp. 51\u201360 (2016)"},{"key":"11_CR9","unstructured":"Fam, R., Lepage, Y.: Tools for the production of analogical grids and a resource of n-gram analogical grids in 11 languages. In: 11th LREC, pp. 1060\u20131066. ELRA (2018)"},{"key":"11_CR10","doi-asserted-by":"crossref","unstructured":"Karpinska, M., Li, B., Rogers, A., Drozd, A.: Subcharacter information in japanese embeddings: when is it worth it? In: Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pp. 28\u201337. ACL (2018)","DOI":"10.18653\/v1\/W18-2905"},{"key":"11_CR11","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd ICLR (2015)"},{"key":"11_CR12","doi-asserted-by":"crossref","unstructured":"Langlais, P., Yvon, F., Zweigenbaum, P.: Improvements in analogical learning: application to translating multi-terms of the medical domain. In: 12th EACL, pp. 487\u2013495. ACL (2009)","DOI":"10.3115\/1609067.1609121"},{"key":"11_CR13","unstructured":"Leer, J.: Proto-athabaskan verb stem variation. Part One: Phonology. Fairbanks: Alaska Native Language Center (1979)"},{"key":"11_CR14","unstructured":"Lepage, Y.: De l\u2019analogie rendant compte de la commutation en linguistique. Universit\u00e9 Joseph-Fourier - Grenoble I, Habilitation \u00e0 diriger des recherches (2003)"},{"key":"11_CR15","unstructured":"Lepage, Y.: Character-position arithmetic for analogy questions between word forms. In: 25th ICCBR (Workshops), vol. 2028, pp. 23\u201332 (2017)"},{"key":"11_CR16","doi-asserted-by":"crossref","unstructured":"Lepage, Y., Ando, S.: Saussurian analogy: a theoretical account and its application. In: 16th COLING (1996)","DOI":"10.3115\/993268.993293"},{"key":"11_CR17","doi-asserted-by":"crossref","unstructured":"Levy, O., Goldberg, Y.: Dependency-based word embeddings. In: 52nd ACL (Volume 2: Short Papers), pp. 302\u2013308. ACL (2014)","DOI":"10.3115\/v1\/P14-2050"},{"key":"11_CR18","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"156","DOI":"10.1007\/978-3-030-86957-1_11","volume-title":"Case-Based Reasoning Research and Development","author":"J Lieber","year":"2021","unstructured":"Lieber, J., Nauer, E., Prade, H.: When revision-based case adaptation meets analogical extrapolation. In: S\u00e1nchez-Ruiz, A.A., Floyd, M.W. (eds.) ICCBR 2021. LNCS (LNAI), vol. 12877, pp. 156\u2013170. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86957-1_11"},{"key":"11_CR19","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"238","DOI":"10.1007\/978-3-030-29765-7_20","volume-title":"Symbolic and Quantitative Approaches to Reasoning with Uncertainty","author":"S Lim","year":"2019","unstructured":"Lim, S., Prade, H., Richard, G.: Solving word analogies: a machine learning perspective. In: Kern-Isberner, G., Ognjanovi\u0107, Z. (eds.) ECSQARU 2019. LNCS (LNAI), vol. 11726, pp. 238\u2013250. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-29765-7_20"},{"key":"11_CR20","unstructured":"Marquer, E., Couceiro, M., Alsaidi, S., Decker, A.: Siganalogies - morphological analogies from Sigmorphon 2016 and 2019 (2022)"},{"key":"11_CR21","doi-asserted-by":"publisher","first-page":"793","DOI":"10.1613\/jair.2519","volume":"32","author":"L Miclet","year":"2008","unstructured":"Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms and two experiments in machine learning. J. Artif. Intell. Res. 32, 793\u2013824 (2008)","journal-title":"J. Artif. Intell. Res."},{"key":"11_CR22","unstructured":"Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: 1st ICLR, Workshop Track (2013)"},{"key":"11_CR23","doi-asserted-by":"crossref","unstructured":"Murena, P.A., Al-Ghossein, M., Dessalles, J.L., Cornu\u00e9jols, A.: Solving analogies on words based on minimal complexity transformation. In: 29th IJCAI, pp. 1848\u20131854 (2020)","DOI":"10.24963\/ijcai.2020\/256"},{"key":"11_CR24","series-title":"Studies in Computational Intelligence","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-642-54516-0_1","volume-title":"Computational Approaches to Analogical Reasoning: Current Trends","author":"H Prade","year":"2014","unstructured":"Prade, H., Richard, G.: A short introduction to computational trends in analogical reasoning. In: Prade, H., Richard, G. (eds.) Computational Approaches to Analogical Reasoning: Current Trends. SCI, vol. 548, pp. 1\u201322. Springer, Heidelberg (2014). https:\/\/doi.org\/10.1007\/978-3-642-54516-0_1"},{"issue":"1","key":"11_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/0010-0285(73)90023-6","volume":"5","author":"DE Rumelhart","year":"1973","unstructured":"Rumelhart, D.E., Abrahamson, A.A.: A model for analogical reasoning. Cogn. Psychol. 5(1), 1\u201318 (1973)","journal-title":"Cogn. Psychol."},{"key":"11_CR26","unstructured":"de Saussure, F.: Cours de linguistique g\u00e9n\u00e9rale. Payot (1916)"},{"key":"11_CR27","unstructured":"Vania, C.: On understanding character-level models for representing morphology. Ph.D. thesis, University of Edinburgh (2020)"},{"key":"11_CR28","doi-asserted-by":"crossref","unstructured":"Wang, L., Lepage, Y.: Vector-to-sequence models for sentence analogies. In: ICACSIS, pp. 441\u2013446 (2020)","DOI":"10.1109\/ICACSIS51025.2020.9263191"},{"key":"11_CR29","unstructured":"Yvon, F.: Finite-state transducers solving analogies on words. Rapport GET\/ENST <CI (2003)"}],"container-title":["Lecture Notes in Computer Science","Case-Based Reasoning Research and Development"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-14923-8_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,4]],"date-time":"2022-09-04T23:03:53Z","timestamp":1662332633000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-14923-8_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031149221","9783031149238"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-14923-8_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"14 August 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCBR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Case-Based Reasoning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Nancy","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccbr2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccbr2022.loria.fr\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"68","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}