{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T03:56:59Z","timestamp":1743134219011,"version":"3.40.3"},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031149023"},{"type":"electronic","value":"9783031149030"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-14903-0_32","type":"book-chapter","created":{"date-parts":[[2022,10,18]],"date-time":"2022-10-18T23:03:00Z","timestamp":1666134180000},"page":"302-309","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Background Augmentation with\u00a0Transformer-Based Autoencoder for\u00a0Hyperspectral Anomaly Detection"],"prefix":"10.1007","author":[{"given":"Jianing","family":"Wang","sequence":"first","affiliation":[]},{"given":"Yichen","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Linhao","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,19]]},"reference":[{"issue":"1","key":"32_CR1","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1109\/MGRS.2021.3105440","volume":"10","author":"H Su","year":"2021","unstructured":"Su, H., Wu, Z., Zhang, H., et al.: Hyperspectral anomaly detection: a survey. IEEE Geosci. Remote Sens. Mag. 10(1), 64\u201390 (2021)","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"issue":"10","key":"32_CR2","doi-asserted-by":"publisher","first-page":"1760","DOI":"10.1109\/29.60107","volume":"38","author":"IS Reed","year":"1990","unstructured":"Reed, I.S., Yu, X.: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760\u20131770 (1990)","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"issue":"1","key":"32_CR3","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1109\/LGRS.2013.2257670","volume":"11","author":"S Matteoli","year":"2013","unstructured":"Matteoli, S., Veracini, T., Diani, M., et al.: A locally adaptive background density estimator: an evolution for RX-based anomaly detectors. IEEE Geosci. Remote Sens. Lett. 11(1), 323\u2013327 (2013)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"3","key":"32_CR4","doi-asserted-by":"publisher","first-page":"1463","DOI":"10.1109\/TGRS.2014.2343955","volume":"53","author":"W Li","year":"2014","unstructured":"Li, W., Du, Q.: Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 53(3), 1463\u20131474 (2014)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"32_CR5","unstructured":"Li, L., Li, W., Qu, Y., et al.: Prior-based tensor approximation for anomaly detection in hyperspectral imagery. IEEE Trans. Neural Netw. Learn. Syst. (2020)"},{"issue":"11","key":"32_CR6","doi-asserted-by":"publisher","first-page":"9553","DOI":"10.1109\/TGRS.2021.3049224","volume":"59","author":"X Fu","year":"2021","unstructured":"Fu, X., Jia, S., Zhuang, L., et al.: Hyperspectral anomaly detection via deep plug-and-play denoising CNN regularization. IEEE Trans. Geosci. Remote Sens. 59(11), 9553\u20139568 (2021)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"32_CR7","doi-asserted-by":"publisher","first-page":"693","DOI":"10.3390\/s18030693","volume":"18","author":"N Ma","year":"2018","unstructured":"Ma, N., Peng, Y., Wang, S., et al.: An unsupervised deep hyperspectral anomaly detector. Sensors 18(3), 693 (2018)","journal-title":"Sensors"},{"issue":"3","key":"32_CR8","doi-asserted-by":"publisher","first-page":"1527","DOI":"10.1109\/TGRS.2019.2944419","volume":"58","author":"X Lu","year":"2019","unstructured":"Lu, X., Zhang, W., Huang, J.: Exploiting embedding manifold of autoencoders for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 58(3), 1527\u20131537 (2019)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"7","key":"32_CR9","doi-asserted-by":"publisher","first-page":"4666","DOI":"10.1109\/TGRS.2020.2965961","volume":"58","author":"T Jiang","year":"2020","unstructured":"Jiang, T., Li, Y., Xie, W., et al.: Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 58(7), 4666\u20134679 (2020)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"32_CR10","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"32_CR11","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"key":"32_CR12","unstructured":"Fang, Y., Liao, B., Wang, X., et al.: You only look at one sequence: rethinking transformer in vision through object detection. In: Advances in Neural Information Processing Systems, vol. 34, pp. 26183\u201326197 (2021)"},{"issue":"4","key":"32_CR13","doi-asserted-by":"publisher","first-page":"433","DOI":"10.1002\/wics.101","volume":"2","author":"H Abdi","year":"2010","unstructured":"Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433\u2013459 (2010)","journal-title":"Wiley Interdiscip. Rev. Comput. Stat."},{"issue":"12","key":"32_CR14","doi-asserted-by":"publisher","first-page":"4655","DOI":"10.1109\/TIT.2007.909108","volume":"53","author":"JA Tropp","year":"2007","unstructured":"Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655\u20134666 (2007)","journal-title":"IEEE Trans. Inf. Theory"}],"container-title":["IFIP Advances in Information and Communication Technology","Intelligence Science IV"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-14903-0_32","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T07:08:10Z","timestamp":1672384090000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-14903-0_32"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031149023","9783031149030"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-14903-0_32","relation":{},"ISSN":["1868-4238","1868-422X"],"issn-type":[{"type":"print","value":"1868-4238"},{"type":"electronic","value":"1868-422X"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"19 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligence Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Xi'an","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icis2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.intsci.ac.cn\/icis2022\/home\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Open","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"85","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"52% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}