{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:51:57Z","timestamp":1726170717295},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031133206"},{"type":"electronic","value":"9783031133213"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-13321-3_4","type":"book-chapter","created":{"date-parts":[[2022,8,6]],"date-time":"2022-08-06T17:03:55Z","timestamp":1659805435000},"page":"38-48","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Classifying Sport-Related Human Activity from\u00a0Thermal Vision Sensors Using CNN and\u00a0LSTM"],"prefix":"10.1007","author":[{"given":"Aurora","family":"Polo-Rodriguez","sequence":"first","affiliation":[]},{"given":"Alicia","family":"Montoro-Lendinez","sequence":"additional","affiliation":[]},{"given":"Macarena","family":"Espinilla","sequence":"additional","affiliation":[]},{"given":"Javier","family":"Medina-Quero","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,8,7]]},"reference":[{"key":"4_CR1","doi-asserted-by":"crossref","unstructured":"Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of things (iot) communication protocols. In: 2017 8th International conference on information technology (ICIT), pp. 685\u2013690. IEEE (2017)","DOI":"10.1109\/ICITECH.2017.8079928"},{"key":"4_CR2","unstructured":"Cire\u015fan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-performance neural networks for visual object classification. arXiv preprint arXiv:1102.0183 (2011)"},{"key":"4_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107561","volume":"108","author":"LM Dang","year":"2020","unstructured":"Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H.: Sensor-based and vision-based human activity recognition: a comprehensive survey. Pattern Recogn. 108, 107561 (2020)","journal-title":"Pattern Recogn."},{"key":"4_CR4","doi-asserted-by":"publisher","first-page":"59192","DOI":"10.1109\/ACCESS.2018.2873502","volume":"6","author":"E De-La-Hoz-Franco","year":"2018","unstructured":"De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition-a systematic review of literature. IEEE Access 6, 59192\u201359210 (2018)","journal-title":"IEEE Access"},{"key":"4_CR5","doi-asserted-by":"crossref","unstructured":"Gochoo, M., Tan, T.H., Batjargal, T., Seredin, O., Huang, S.C.: Device-free non-privacy invasive indoor human posture recognition using low-resolution infrared sensor-based wireless sensor networks and dcnn. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2311\u20132316. IEEE (2018)","DOI":"10.1109\/SMC.2018.00397"},{"issue":"4","key":"4_CR6","doi-asserted-by":"publisher","first-page":"7192","DOI":"10.1109\/JIOT.2019.2915095","volume":"6","author":"M Gochoo","year":"2019","unstructured":"Gochoo, M., et al.: Novel IoT-based privacy-preserving yoga posture recognition system using low-resolution infrared sensors and deep learning. IEEE Internet Things J. 6(4), 7192\u20137200 (2019)","journal-title":"IEEE Internet Things J."},{"issue":"4","key":"4_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3161198","volume":"1","author":"E Griffiths","year":"2018","unstructured":"Griffiths, E., Assana, S., Whitehouse, K.: Privacy-preserving image processing with binocular thermal cameras. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 1(4), 1\u201325 (2018)","journal-title":"Proc. ACM Interact. Mob. Wearable Ubiq. Technol."},{"key":"4_CR8","unstructured":"Han, J., Bhanu, B.: Human activity recognition in thermal infrared imagery. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005)-Workshops, p. 17. IEEE (2005)"},{"key":"4_CR9","series-title":"Intelligent Systems Reference Library","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1007\/978-981-13-8759-3_4","volume-title":"Multimedia Big Data Computing for IoT Applications","author":"S Hiriyannaiah","year":"2020","unstructured":"Hiriyannaiah, S., Akanksh, B.S., Koushik, A.S., Siddesh, G.M., Srinivasa, K.G.: Deep learning for multimedia data in IoT. In: Tanwar, S., Tyagi, S., Kumar, N. (eds.) Multimedia Big Data Computing for IoT Applications. ISRL, vol. 163, pp. 101\u2013129. Springer, Singapore (2020). https:\/\/doi.org\/10.1007\/978-981-13-8759-3_4"},{"key":"4_CR10","doi-asserted-by":"crossref","unstructured":"Kong, X., Meng, Z., Meng, L., Tomiyama, H.: A privacy protected fall detection IoT system for elderly persons using depth camera. In: 2018 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 31\u201335. IEEE (2018)","DOI":"10.1109\/ICAMechS.2018.8506987"},{"key":"4_CR11","first-page":"1","volume":"25","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1\u20139 (2012)","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"11","key":"4_CR12","doi-asserted-by":"publisher","first-page":"4207","DOI":"10.1109\/TCSVT.2019.2952779","volume":"30","author":"A Mart\u00ednez-Gonz\u00e1lez","year":"2019","unstructured":"Mart\u00ednez-Gonz\u00e1lez, A., Villamizar, M., Can\u00e9vet, O., Odobez, J.M.: Efficient convolutional neural networks for depth-based multi-person pose estimation. IEEE Trans. Circ. Syst. Video Technol. 30(11), 4207\u20134221 (2019)","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"4_CR13","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1016\/j.eswa.2018.07.068","volume":"114","author":"J Medina-Quero","year":"2018","unstructured":"Medina-Quero, J., Zhang, S., Nugent, C., Espinilla, M.: Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Syst. Appl. 114, 441\u2013453 (2018)","journal-title":"Expert Syst. Appl."},{"issue":"14","key":"4_CR14","doi-asserted-by":"publisher","first-page":"21465","DOI":"10.1007\/s11042-021-10687-5","volume":"80","author":"A Nadeem","year":"2021","unstructured":"Nadeem, A., Jalal, A., Kim, K.: Automatic human posture estimation for sport activity recognition with robust body parts detection and entropy markov model. Multimedia Tools Appl. 80(14), 21465\u201321498 (2021). https:\/\/doi.org\/10.1007\/s11042-021-10687-5","journal-title":"Multimedia Tools Appl."},{"key":"4_CR15","doi-asserted-by":"publisher","DOI":"10.1016\/j.sna.2020.112105","volume":"312","author":"S Nasiri","year":"2020","unstructured":"Nasiri, S., Khosravani, M.R.: Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuators A: Phys. 312, 112105 (2020)","journal-title":"Sens. Actuators A: Phys."},{"issue":"1","key":"4_CR16","doi-asserted-by":"publisher","first-page":"115","DOI":"10.3390\/s16010115","volume":"16","author":"FJ Ord\u00f3\u00f1ez","year":"2016","unstructured":"Ord\u00f3\u00f1ez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)","journal-title":"Sensors"},{"issue":"15","key":"4_CR17","doi-asserted-by":"publisher","first-page":"6978","DOI":"10.3390\/app11156978","volume":"11","author":"A Polo-Rodriguez","year":"2021","unstructured":"Polo-Rodriguez, A., Vilchez Chiachio, J.M., Paggetti, C., Medina-Quero, J.: Ambient sound recognition of daily events by means of convolutional neural networks and fuzzy temporal restrictions. Appl. Sci. 11(15), 6978 (2021)","journal-title":"Appl. Sci."},{"issue":"4","key":"4_CR18","volume":"8","author":"S Ramasamy Ramamurthy","year":"2018","unstructured":"Ramasamy Ramamurthy, S., Roy, N.: Recent trends in machine learning for human activity recognition-a survey. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 8(4), e1254 (2018)","journal-title":"Wiley Interdisc. Rev. Data Min. Knowl. Disc."},{"issue":"2","key":"4_CR19","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1109\/MPRV.2004.1316817","volume":"3","author":"A Sixsmith","year":"2004","unstructured":"Sixsmith, A., Johnson, N.: A smart sensor to detect the falls of the elderly. IEEE Perv. Comput. 3(2), 42\u201347 (2004)","journal-title":"IEEE Perv. Comput."},{"key":"4_CR20","doi-asserted-by":"crossref","unstructured":"Sozykin, K., Protasov, S., Khan, A., Hussain, R., Lee, J.: Multi-label class-imbalanced action recognition in hockey videos via 3d convolutional neural networks. In: 2018 19th IEEE\/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel\/Distributed Computing (SNPD), pp. 146\u2013151. IEEE (2018)","DOI":"10.1109\/SNPD.2018.8441034"},{"key":"4_CR21","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.patrec.2018.02.010","volume":"119","author":"J Wang","year":"2019","unstructured":"Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3\u201311 (2019)","journal-title":"Pattern Recogn. Lett."},{"key":"4_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.106970","volume":"223","author":"SK Yadav","year":"2021","unstructured":"Yadav, S.K., Tiwari, K., Pandey, H.M., Akbar, S.A.: A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions. Knowl.-Based Syst. 223, 106970 (2021)","journal-title":"Knowl.-Based Syst."},{"key":"4_CR23","doi-asserted-by":"crossref","unstructured":"Yamashita, T., Watasue, T., Yamauchi, Y., Fujiyoshi, H.: Improving quality of training samples through exhaustless generation and effective selection for deep convolutional neural networks. In: VISAPP, no. 2, pp. 228\u2013235 (2015)","DOI":"10.5220\/0005263802280235"},{"key":"4_CR24","doi-asserted-by":"crossref","unstructured":"Zhang, C., Yang, F., Li, G., Zhai, Q., Jiang, Y., Xuan, D.: Mv-sports: a motion and vision sensor integration-based sports analysis system. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 1070\u20131078. IEEE (2018)","DOI":"10.1109\/INFOCOM.2018.8485910"},{"issue":"4","key":"4_CR25","doi-asserted-by":"publisher","first-page":"1476","DOI":"10.3390\/s22041476","volume":"22","author":"S Zhang","year":"2022","unstructured":"Zhang, S., et al.: Deep learning in human activity recognition with wearable sensors: a review on advances. Sensors 22(4), 1476 (2022)","journal-title":"Sensors"},{"key":"4_CR26","doi-asserted-by":"crossref","unstructured":"Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthcare Eng. 2017 (2017)","DOI":"10.1155\/2017\/3090343"}],"container-title":["Lecture Notes in Computer Science","Image Analysis and Processing. ICIAP 2022 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-13321-3_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,6]],"date-time":"2022-08-06T17:04:53Z","timestamp":1659805493000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-13321-3_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031133206","9783031133213"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-13321-3_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"7 August 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIAP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image Analysis and Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lecce","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 May 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 May 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iciap2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iciap2021.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"307","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"168","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}