{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:20:18Z","timestamp":1740100818503,"version":"3.37.3"},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031133206"},{"type":"electronic","value":"9783031133213"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-13321-3_32","type":"book-chapter","created":{"date-parts":[[2022,8,6]],"date-time":"2022-08-06T17:03:55Z","timestamp":1659805435000},"page":"362-373","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["MRI-Based Radiomics Analysis for Identification of Features Correlated with the Expanded Disability Status Scale of Multiple Sclerosis Patients"],"prefix":"10.1007","author":[{"given":"Valentina","family":"Nepi","sequence":"first","affiliation":[]},{"given":"Giovanni","family":"Pasini","sequence":"additional","affiliation":[]},{"given":"Fabiano","family":"Bini","sequence":"additional","affiliation":[]},{"given":"Franco","family":"Marinozzi","sequence":"additional","affiliation":[]},{"given":"Giorgio","family":"Russo","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7189-1731","authenticated-orcid":false,"given":"Alessandro","family":"Stefano","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,8,7]]},"reference":[{"key":"32_CR1","first-page":"1251","volume":"19","author":"RI Grossman","year":"1998","unstructured":"Grossman, R.I., McGowan, J.C.: Perspectives on multiple sclerosis. Am. J. Neuroradiol. 19, 1251\u20131265 (1998)","journal-title":"Am. J. Neuroradiol."},{"key":"32_CR2","doi-asserted-by":"publisher","first-page":"1444","DOI":"10.1212\/wnl.33.11.1444","volume":"33","author":"JF Kurtzke","year":"1983","unstructured":"Kurtzke, J.F.: Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 33, 1444\u20131452 (1983). https:\/\/doi.org\/10.1212\/wnl.33.11.1444","journal-title":"Neurology"},{"key":"32_CR3","doi-asserted-by":"publisher","first-page":"488","DOI":"10.2967\/JNUMED.118.222893","volume":"61","author":"ME Mayerhoefer","year":"2020","unstructured":"Mayerhoefer, M.E., et al.: Introduction to radiomics. J. Nucl. Med. 61, 488\u2013495 (2020). https:\/\/doi.org\/10.2967\/JNUMED.118.222893","journal-title":"J. Nucl. Med."},{"key":"32_CR4","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1701\/3315.32853","volume":"111","author":"F Vernuccio","year":"2020","unstructured":"Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: Radiomics and artificial intelligence: New frontiers in medicine. Recenti Prog. Med. 111, 130\u2013135 (2020). https:\/\/doi.org\/10.1701\/3315.32853","journal-title":"Recenti Prog. Med."},{"issue":"7","key":"32_CR5","doi-asserted-by":"publisher","first-page":"4595","DOI":"10.1007\/s00330-020-07617-8","volume":"31","author":"P Alongi","year":"2021","unstructured":"Alongi, P., et al.: Radiomics analysis of 18F-Choline PET\/CT in the prediction of disease outcome in high-risk prostate cancer: An explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 31(7), 4595\u20134605 (2021). https:\/\/doi.org\/10.1007\/s00330-020-07617-8","journal-title":"Eur. Radiol."},{"key":"32_CR6","doi-asserted-by":"publisher","first-page":"306","DOI":"10.3390\/diagnostics10050306","volume":"10","author":"A Stefano","year":"2020","unstructured":"Stefano, A., et al.: Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT. Diagnostics. 10, 306 (2020). https:\/\/doi.org\/10.3390\/diagnostics10050306","journal-title":"Diagnostics."},{"key":"32_CR7","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1016\/j.ejca.2011.11.036","volume":"48","author":"P Lambin","year":"2012","unstructured":"Lambin, P., et al.: Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer. 48, 441\u2013446 (2012). https:\/\/doi.org\/10.1016\/j.ejca.2011.11.036","journal-title":"Eur. J. Cancer."},{"key":"32_CR8","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"280","DOI":"10.1007\/978-3-030-52791-4_22","volume-title":"Medical Image Understanding and Analysis","author":"A Comelli","year":"2020","unstructured":"Comelli, A., et al.: Radiomics: A new biomedical workflow to create a predictive model. In: Papie\u017c, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 280\u2013293. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-52791-4_22"},{"issue":"1","key":"32_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13244-020-00887-2","volume":"11","author":"JE van Timmeren","year":"2020","unstructured":"van Timmeren, J.E., Cester, D., Tanadini-Lang, S., Alkadhi, H., Baessler, B.: Radiomics in medical imaging\u2014\u201chow-to\u201d guide and critical reflection. Insights Imaging 11(1), 1\u201316 (2020). https:\/\/doi.org\/10.1186\/s13244-020-00887-2","journal-title":"Insights Imaging"},{"key":"32_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"711","DOI":"10.1007\/978-3-642-41184-7_72","volume-title":"Image Analysis and Processing \u2013 ICIAP 2013","author":"A Stefano","year":"2013","unstructured":"Stefano, A., et al.: A graph-based method for pet image segmentation in radiotherapy planning: A pilot study. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8157, pp. 711\u2013720. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-41184-7_72"},{"key":"32_CR11","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-39343-4_1","volume-title":"Medical Image Understanding and Analysis","author":"A Comelli","year":"2020","unstructured":"Comelli, A., et al.: Tissue classification to support local active delineation of brain tumors. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 3\u201314. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-39343-4_1"},{"key":"32_CR12","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1002\/ima.22168","volume":"26","author":"L Agnello","year":"2016","unstructured":"Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26, 136\u2013150 (2016). https:\/\/doi.org\/10.1002\/ima.22168","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"32_CR13","doi-asserted-by":"publisher","first-page":"1323","DOI":"10.1016\/j.mri.2012.05.001","volume":"30","author":"A Fedorov","year":"2012","unstructured":"Fedorov, A., et al.: 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging. 30, 1323\u20131341 (2012). https:\/\/doi.org\/10.1016\/j.mri.2012.05.001","journal-title":"Magn. Reson. Imaging."},{"key":"32_CR14","doi-asserted-by":"publisher","first-page":"e104","DOI":"10.1158\/0008-5472.CAN-17-0339","volume":"77","author":"JJM Van Griethuysen","year":"2017","unstructured":"Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104\u2013e107 (2017). https:\/\/doi.org\/10.1158\/0008-5472.CAN-17-0339","journal-title":"Cancer Res."},{"key":"32_CR15","doi-asserted-by":"publisher","first-page":"328","DOI":"10.1148\/radiol.2020191145","volume":"295","author":"A Zwanenburg","year":"2020","unstructured":"Zwanenburg, A., et al.: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328\u2013338 (2020). https:\/\/doi.org\/10.1148\/radiol.2020191145","journal-title":"Radiology"},{"issue":"1","key":"32_CR16","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1007\/s12021-017-9348-7","volume":"16","author":"\u017d Lesjak","year":"2017","unstructured":"Lesjak, \u017d, et al.: A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics 16(1), 51\u201363 (2017). https:\/\/doi.org\/10.1007\/s12021-017-9348-7","journal-title":"Neuroinformatics"},{"key":"32_CR17","unstructured":"Quantim knowledge-base: https:\/\/www.quantim.eu\/. Accessed 11 Apr 2022"},{"key":"32_CR18","doi-asserted-by":"publisher","first-page":"196","DOI":"10.1109\/TMI.2009.2035616","volume":"29","author":"S Klein","year":"2010","unstructured":"Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: Elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging. 29, 196\u2013205 (2010). https:\/\/doi.org\/10.1109\/TMI.2009.2035616","journal-title":"IEEE Trans. Med. Imaging."},{"key":"32_CR19","doi-asserted-by":"publisher","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","volume":"29","author":"NJ Tustison","year":"2010","unstructured":"Tustison, N.J., et al.: N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging. 29, 1310\u20131320 (2010). https:\/\/doi.org\/10.1109\/TMI.2010.2046908","journal-title":"IEEE Trans. Med. Imaging."},{"key":"32_CR20","unstructured":"NIfTI background: https:\/\/nifti.nimh.nih.gov\/. Accessed 11 Apr 2022"},{"key":"32_CR21","doi-asserted-by":"publisher","first-page":"665","DOI":"10.5124\/jkma.2009.52.7.665","volume":"52","author":"W Kim","year":"2009","unstructured":"Kim, W., Kim, H.J.: Multiple sclerosis. J. Korean Med. Assoc. 52, 665\u2013676 (2009). https:\/\/doi.org\/10.5124\/jkma.2009.52.7.665","journal-title":"J. Korean Med. Assoc."},{"key":"32_CR22","doi-asserted-by":"publisher","first-page":"850","DOI":"10.3389\/fnins.2021.691244","volume":"15","author":"M Bretzner","year":"2021","unstructured":"Bretzner, M., et al.: MRI radiomic signature of white matter hyperintensities is associated with clinical phenotypes. Front. Neurosci. 15, 850 (2021). https:\/\/doi.org\/10.3389\/fnins.2021.691244","journal-title":"Front. Neurosci."},{"key":"32_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-69298-z","volume":"10","author":"A Carr\u00e9","year":"2020","unstructured":"Carr\u00e9, A., et al.: Standardization of brain MR images across machines and protocols: Bridging the gap for MRI-based radiomics. Sci. Rep. 10, 1\u201315 (2020). https:\/\/doi.org\/10.1038\/s41598-020-69298-z","journal-title":"Sci. Rep."},{"key":"32_CR24","doi-asserted-by":"publisher","first-page":"961","DOI":"10.1002\/asmb.2642","volume":"37","author":"S Barone","year":"2021","unstructured":"Barone, S., et al.: Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 37, 961\u2013972 (2021). https:\/\/doi.org\/10.1002\/asmb.2642","journal-title":"Appl. Stoch. Model. Bus. Ind."},{"key":"32_CR25","doi-asserted-by":"publisher","first-page":"169","DOI":"10.3233\/AIC-170729","volume":"30","author":"A Tharwat","year":"2017","unstructured":"Tharwat, A., Gaber, T., Ibrahim, A., Hassanien, A.E.: Linear discriminant analysis: A detailed tutorial. AI Commun. 30, 169\u2013190 (2017). https:\/\/doi.org\/10.3233\/AIC-170729","journal-title":"AI Commun."},{"key":"32_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3389\/fnins.2021.679941","volume":"15","author":"E Lavrova","year":"2021","unstructured":"Lavrova, E., et al.: Exploratory radiomic analysis of conventional vs. quantitative brain MRI: Toward automatic diagnosis of early multiple sclerosis. Front. Neurosci. 15, 1\u201314 (2021). https:\/\/doi.org\/10.3389\/fnins.2021.679941","journal-title":"Front. Neurosci."},{"key":"32_CR27","doi-asserted-by":"publisher","first-page":"10170","DOI":"10.3390\/app112110170","volume":"11","author":"A Stefano","year":"2021","unstructured":"Stefano, A., et al.: Robustness of pet radiomics features: Impact of co-registration with MRI. Appl. Sci. 11, 10170 (2021). https:\/\/doi.org\/10.3390\/app112110170","journal-title":"Appl. Sci."},{"key":"32_CR28","doi-asserted-by":"publisher","first-page":"131","DOI":"10.3390\/jimaging7080131","volume":"7","author":"A Stefano","year":"2021","unstructured":"Stefano, A., Comelli, A.: Customized efficient neural network for Covid-19 infected region identification in CT images. J. Imaging. 7, 131 (2021). https:\/\/doi.org\/10.3390\/jimaging7080131","journal-title":"J. Imaging."},{"key":"32_CR29","doi-asserted-by":"publisher","unstructured":"Salvaggio, G., et al.: Deep learning network for segmentation of the prostate gland with median lobe enlargement in T2-weighted MR images: Comparison with manual segmentation method. Curr. Probl. Diagn. Radiol.2021https:\/\/doi.org\/10.1067\/j.cpradiol.2021.06.006","DOI":"10.1067\/j.cpradiol.2021.06.006"}],"container-title":["Lecture Notes in Computer Science","Image Analysis and Processing. ICIAP 2022 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-13321-3_32","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,6]],"date-time":"2022-08-06T17:08:08Z","timestamp":1659805688000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-13321-3_32"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031133206","9783031133213"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-13321-3_32","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"7 August 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIAP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image Analysis and Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lecce","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 May 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 May 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iciap2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iciap2021.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"307","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"168","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}