{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:44:45Z","timestamp":1726170285325},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031127472"},{"type":"electronic","value":"9783031127489"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-12748-9_13","type":"book-chapter","created":{"date-parts":[[2022,7,29]],"date-time":"2022-07-29T14:29:33Z","timestamp":1659104973000},"page":"162-173","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Towards Real-Time and\u00a0Energy Efficient Siamese Tracking \u2013 A Hardware-Software Approach"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5836-8604","authenticated-orcid":false,"given":"Dominika","family":"Przewlocka-Rus","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6798-4444","authenticated-orcid":false,"given":"Tomasz","family":"Kryjak","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,30]]},"reference":[{"key":"13_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"850","DOI":"10.1007\/978-3-319-48881-3_56","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"L Bertinetto","year":"2016","unstructured":"Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850\u2013865. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48881-3_56"},{"key":"13_CR2","doi-asserted-by":"crossref","unstructured":"Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.: End-to-end representation learning for correlation filter based tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)","DOI":"10.1109\/CVPR.2017.531"},{"key":"13_CR3","doi-asserted-by":"publisher","first-page":"110149","DOI":"10.1109\/ACCESS.2021.3101988","volume":"9","author":"M Ondra\u0161ovi\u010d","year":"2021","unstructured":"Ondra\u0161ovi\u010d, M., Tar\u00e1bek, P.: Siamese visual object tracking: a survey. IEEE Access 9, 110149\u2013110172 (2021)","journal-title":"IEEE Access"},{"key":"13_CR4","unstructured":"Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: SiamCAR: Siamese fully convolutional classification and regression for visual tracking. CoRR. abs\/1911.07241 (2019). http:\/\/arxiv.org\/abs\/1911.07241"},{"key":"13_CR5","unstructured":"Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. CoRR. abs\/1812.11703 (2018). http:\/\/arxiv.org\/abs\/1812.11703"},{"key":"13_CR6","doi-asserted-by":"crossref","unstructured":"Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 8971\u20138980 (2018)","DOI":"10.1109\/CVPR.2018.00935"},{"key":"13_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"463","DOI":"10.1007\/978-3-030-03801-4_41","volume-title":"Advances in Visual Computing","author":"MH Abdelpakey","year":"2018","unstructured":"Abdelpakey, M.H., Shehata, M.S., Mohamed, M.M.: DensSiam: end-to-end Densely-Siamese network with self-attention model for object tracking. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Turek, M., Ramalingam, S., Xu, K., Lin, S., Alsallakh, B., Yang, J., Cuervo, E., Ventura, J. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 463\u2013473. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-03801-4_41"},{"key":"13_CR8","unstructured":"Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.: Fast online object tracking and segmentation: a unifying approach. CoRR. abs\/1812.05050 (2018). http:\/\/arxiv.org\/abs\/1812.05050"},{"key":"13_CR9","unstructured":"Li, Y., Zhang, X.: SiamVGG: visual tracking using deeper Siamese networks (2019)"},{"key":"13_CR10","doi-asserted-by":"crossref","unstructured":"Cui, Z., An, J.: Heterogeneous Siamese tracking system based on PYNQ framework. In: 2020 6th International Conference On Control, Automation And Robotics (ICCAR), pp. 16\u201320 (2020)","DOI":"10.1109\/ICCAR49639.2020.9108096"},{"key":"13_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1007\/978-3-030-59006-2_14","volume-title":"Computer Vision and Graphics","author":"D Przewlocka","year":"2020","unstructured":"Przewlocka, D., Wasala, M., Szolc, H., Blachut, K., Kryjak, T.: Optimisation of a Siamese neural network for real-time energy efficient object tracking. In: Chmielewski, L.J., Kozera, R., Or\u0142owski, A. (eds.) ICCVG 2020. LNCS, vol. 12334, pp. 151\u2013163. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59006-2_14"},{"key":"13_CR12","doi-asserted-by":"crossref","unstructured":"Cao, Y., Ji, H., Zhang, W., Shirani, S.: Extremely tiny Siamese networks with multi-level fusions for visual object tracking. In: 2019 22th International Conference on Information Fusion (FUSION), pp. 1\u20137 (2019)","DOI":"10.23919\/FUSION43075.2019.9011338"},{"key":"13_CR13","doi-asserted-by":"crossref","unstructured":"Hao, C., et al.: Effective algorithm-accelerator co-design for AI solutions on edge devices. (2020). https:\/\/arxiv.org\/abs\/2010.07185","DOI":"10.1145\/3386263.3406956"},{"key":"13_CR14","doi-asserted-by":"crossref","unstructured":"Zhang, B., Li, X., Han, J., Zeng, X.: MiniTracker: a lightweight CNN-based system for visual object tracking on embedded device. In: 2018 IEEE 23rd International Conference On Digital Signal Processing (DSP), pp. 1\u20135 (2018)","DOI":"10.1109\/ICDSP.2018.8631813"},{"key":"13_CR15","doi-asserted-by":"publisher","first-page":"1562","DOI":"10.1109\/TPAMI.2019.2957464","volume":"43","author":"L Huang","year":"2021","unstructured":"Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1562\u20131577 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"13_CR16","unstructured":"GOT 10k leaderboard. http:\/\/got-10k.aitestunion.com\/leaderboard. Accessed 28 Mar 2022"},{"key":"13_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-48881-3","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","year":"2016","unstructured":"Hua, G., J\u00e9gou, H. (eds.): ECCV 2016. LNCS, vol. 9914. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48881-3"},{"key":"13_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3242897","volume":"11","author":"M Blott","year":"2018","unstructured":"Blott, M., et al.: FINN-R: an end-to-end deep-learning framework for fast exploration of quantized neural networks. ACM Trans. Reconfigurable Technol. Syst. 11, 1\u201323 (2018)","journal-title":"ACM Trans. Reconfigurable Technol. Syst."},{"key":"13_CR19","doi-asserted-by":"crossref","unstructured":"Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network inference. In: Proceedings of the 2017 ACM\/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 65\u201374 (2017)","DOI":"10.1145\/3020078.3021744"}],"container-title":["Lecture Notes in Computer Science","Design and Architecture for Signal and Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-12748-9_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,13]],"date-time":"2023-02-13T00:06:12Z","timestamp":1676246772000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-12748-9_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031127472","9783031127489"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-12748-9_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"30 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DASIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Design and Architecture for Signal and Image Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Budapest","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hungary","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 June 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 June 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dasip2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/dasip2022.agh.edu.pl\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}