{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T14:06:48Z","timestamp":1726409208591},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031120961"},{"type":"electronic","value":"9783031120978"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-12097-8_9","type":"book-chapter","created":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T16:04:06Z","timestamp":1664294646000},"page":"95-104","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Survey on\u00a0Remote Sensing Data Augmentation: Advances, Challenges, and\u00a0Future Perspectives"],"prefix":"10.1007","author":[{"given":"Amel","family":"Oubara","sequence":"first","affiliation":[]},{"given":"Falin","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Abdenour","family":"Amamra","sequence":"additional","affiliation":[]},{"given":"Gongliu","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,28]]},"reference":[{"key":"9_CR1","doi-asserted-by":"publisher","unstructured":"Cao, Z., Wu, M., Yan, R., Zhang, F., Wan, X.: Detection of small changed regions in remote sensing imagery using convolutional neural network. In: IOP Conference Series: Earth and Environmental Science, vol.\u00a0502, p. 012017. IOP Publishing, Beijing, China (2020). https:\/\/doi.org\/10.1088\/1755-1315\/502\/1\/012017","DOI":"10.1088\/1755-1315\/502\/1\/012017"},{"issue":"10","key":"9_CR2","doi-asserted-by":"publisher","first-page":"1894","DOI":"10.3390\/rs13101894","volume":"13","author":"C Chen","year":"2021","unstructured":"Chen, C., et al.: Remote sensing image augmentation based on text description for waterside change detection. Remote Sens. 13(10), 1894 (2021). https:\/\/doi.org\/10.3390\/rs13101894","journal-title":"Remote Sens."},{"key":"9_CR3","doi-asserted-by":"publisher","first-page":"5603216","DOI":"10.1109\/TGRS.2021.3066802","volume":"60","author":"H Chen","year":"2021","unstructured":"Chen, H., Li, W., Shi, Z.: Adversarial instance augmentation for building change detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 5603216 (2021). https:\/\/doi.org\/10.1109\/TGRS.2021.3066802","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"9_CR4","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1609\/aimag.v38i3.2756","volume":"38","author":"TG Dietterich","year":"2017","unstructured":"Dietterich, T.G.: Steps toward robust artificial intelligence. AI Mag. 38(3), 3\u201324 (2017). https:\/\/doi.org\/10.1609\/aimag.v38i3.2756","journal-title":"AI Mag."},{"key":"9_CR5","unstructured":"Gauthier, J.: Conditional generative adversarial nets for convolutional face generation. Class Project Stanf. CS231N Convolutional Neural Netw. Vis. Recognit. Winter Semest. 2014(5), 2 (2014)"},{"issue":"11","key":"9_CR6","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1145\/3422622","volume":"63","author":"I Goodfellow","year":"2020","unstructured":"Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139\u2013144 (2020). https:\/\/doi.org\/10.1145\/3422622","journal-title":"Commun. ACM"},{"issue":"11","key":"9_CR7","doi-asserted-by":"publisher","first-page":"1751","DOI":"10.1109\/LGRS.2019.2909495","volume":"16","author":"JM Haut","year":"2019","unstructured":"Haut, J.M., Paoletti, M.E., Plaza, J., Plaza, A., Li, J.: Hyperspectral image classification using random occlusion data augmentation. IEEE Geosci. Remote Sens. Lett. 16(11), 1751\u20131755 (2019)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"9_CR8","doi-asserted-by":"publisher","unstructured":"Li, X., Wang, Y., Wang, K., Yan, L., Wang, F.Y.: The ParallelEye-CS dataset: Constructing artificial scenes for evaluating the visual intelligence of intelligent vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 37\u201342. IEEE (2018). https:\/\/doi.org\/10.1109\/IVS.2018.8500459","DOI":"10.1109\/IVS.2018.8500459"},{"key":"9_CR9","doi-asserted-by":"publisher","first-page":"9318","DOI":"10.1109\/JSTARS.2021.3110842","volume":"14","author":"N Lv","year":"2021","unstructured":"Lv, N., et al.: Remote sensing data augmentation through adversarial training. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 9318\u20139333 (2021). https:\/\/doi.org\/10.1109\/JSTARS.2021.3110842","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"9_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1007\/978-3-319-46475-6_7","volume-title":"Computer Vision \u2013 ECCV 2016","author":"SR Richter","year":"2016","unstructured":"Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102\u2013118. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_7"},{"issue":"10","key":"9_CR11","doi-asserted-by":"publisher","first-page":"1688","DOI":"10.3390\/rs12101688","volume":"12","author":"W Shi","year":"2020","unstructured":"Shi, W., Zhang, M., Zhang, R., Chen, S., Zhan, Z.: Change detection based on artificial intelligence: state-of-the-art and challenges. Remote Sens. 12(10), 1688 (2020). https:\/\/doi.org\/10.3390\/rs12101688","journal-title":"Remote Sens."},{"issue":"1","key":"9_CR12","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1186\/s40537-019-0197-0","volume":"6","author":"C Shorten","year":"2019","unstructured":"Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019). https:\/\/doi.org\/10.1186\/s40537-019-0197-0","journal-title":"J. Big Data"},{"key":"9_CR13","first-page":"1","volume":"19","author":"A Singh","year":"2021","unstructured":"Singh, A., Bruzzone, L.: SIGAN: spectral index generative adversarial network for data augmentation in multispectral remote sensing images. IEEE Geosci. Remote Sens. Lett. 19, 1\u20135 (2021)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"9_CR14","unstructured":"Tero, K., Timo, A., Samuli, L., Jaakko, L.: Progressive growing of GANs for improved quality, stability, and variation. In: Sixth International Conference on Learning Representations (ICLR 2018). Vancouver, Canada (2018)"},{"issue":"8","key":"9_CR15","doi-asserted-by":"publisher","first-page":"1420","DOI":"10.1109\/LGRS.2019.2945848","volume":"17","author":"C Wang","year":"2019","unstructured":"Wang, C., Zhang, L., Wei, W., Zhang, Y.: Hyperspectral image classification with data augmentation and classifier fusion. IEEE Geosci. Remote Sens. Lett. 17(8), 1420\u20131424 (2019)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"9_CR16","doi-asserted-by":"publisher","first-page":"9176","DOI":"10.1109\/JSTARS.2021.3109600","volume":"14","author":"Q Xiao","year":"2021","unstructured":"Xiao, Q., Liu, B., Li, Z., Ni, W., Yang, Z., Li, L.: Progressive data augmentation method for remote sensing ship image classification based on imaging simulation system and neural style transfer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 9176\u20139186 (2021). https:\/\/doi.org\/10.1109\/JSTARS.2021.3109600","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"9_CR17","doi-asserted-by":"publisher","first-page":"56051","DOI":"10.1109\/ACCESS.2019.2913191","volume":"7","author":"Y Yan","year":"2019","unstructured":"Yan, Y., Zhang, Y., Su, N.: A novel data augmentation method for detection of specific aircraft in remote sensing RGB images. IEEE Access 7, 56051\u201356061 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2019.2913191","journal-title":"IEEE Access"},{"key":"9_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1007\/978-3-319-71589-6_9","volume-title":"Image and Graphics","author":"Y Yu","year":"2017","unstructured":"Yu, Y., Gong, Z., Zhong, P., Shan, J.: Unsupervised representation learning with deep convolutional neural network for remote sensing images. In: Zhao, Y., Kong, X., Taubman, D. (eds.) ICIG 2017. LNCS, vol. 10667, pp. 97\u2013108. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-71589-6_9"},{"issue":"3","key":"9_CR19","doi-asserted-by":"publisher","first-page":"240","DOI":"10.3390\/rs11030240","volume":"11","author":"W Zhang","year":"2019","unstructured":"Zhang, W., Lu, X.: The spectral-spatial joint learning for change detection in multispectral imagery. Remote Sens. 11(3), 240 (2019). https:\/\/doi.org\/10.3390\/rs11030240","journal-title":"Remote Sens."},{"key":"9_CR20","doi-asserted-by":"publisher","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223\u20132232. Venice, Italy (2017). https:\/\/doi.org\/10.1109\/ICCV.2017.244","DOI":"10.1109\/ICCV.2017.244"},{"issue":"3","key":"9_CR21","doi-asserted-by":"publisher","first-page":"1100","DOI":"10.1109\/TIP.2017.2773199","volume":"27","author":"Z Zou","year":"2017","unstructured":"Zou, Z., Shi, Z.: Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images. IEEE Trans. Image Process. 27(3), 1100\u20131111 (2017). https:\/\/doi.org\/10.1109\/TIP.2017.2773199","journal-title":"IEEE Trans. Image Process."}],"container-title":["Lecture Notes in Networks and Systems","Advances in Computing Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-12097-8_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T16:14:44Z","timestamp":1664295284000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-12097-8_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031120961","9783031120978"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-12097-8_9","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"28 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computing Systems and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Algiers","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Algeria","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 May 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 May 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"csa2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.emp.mdn.dz\/events\/csa\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}