{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:44:31Z","timestamp":1726170271929},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031120527"},{"type":"electronic","value":"9783031120534"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-12053-4_21","type":"book-chapter","created":{"date-parts":[[2022,7,25]],"date-time":"2022-07-25T09:15:50Z","timestamp":1658740550000},"page":"271-282","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Fitting Segmentation Networks on\u00a0Varying Image Resolutions Using Splatting"],"prefix":"10.1007","author":[{"given":"Mikael","family":"Brudfors","sequence":"first","affiliation":[]},{"given":"Ya\u00ebl","family":"Balbastre","sequence":"additional","affiliation":[]},{"given":"John","family":"Ashburner","sequence":"additional","affiliation":[]},{"given":"Geraint","family":"Rees","sequence":"additional","affiliation":[]},{"given":"Parashkev","family":"Nachev","sequence":"additional","affiliation":[]},{"given":"S\u00e9bastien","family":"Ourselin","sequence":"additional","affiliation":[]},{"given":"M. Jorge","family":"Cardoso","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,25]]},"reference":[{"issue":"2","key":"21_CR1","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","volume":"18","author":"F Isensee","year":"2021","unstructured":"Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203\u2013211 (2021)","journal-title":"Nat. Methods"},{"issue":"10","key":"21_CR2","doi-asserted-by":"publisher","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","volume":"34","author":"BH Menze","year":"2014","unstructured":"Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993\u20132024 (2014)","journal-title":"IEEE Trans. Med. Imaging"},{"unstructured":"Antonelli, M., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)","key":"21_CR3"},{"issue":"11","key":"21_CR4","doi-asserted-by":"publisher","first-page":"2556","DOI":"10.1109\/TMI.2019.2905770","volume":"38","author":"HJ Kuijf","year":"2019","unstructured":"Kuijf, H.J., et al.: Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge. IEEE Trans. Med. Imaging 38(11), 2556\u20132568 (2019)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"21_CR5","doi-asserted-by":"publisher","first-page":"434","DOI":"10.1016\/j.neuroimage.2009.12.007","volume":"50","author":"PA Yushkevich","year":"2010","unstructured":"Yushkevich, P.A., et al.: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3 T MRI data. Neuroimage 50(2), 434\u2013445 (2010)","journal-title":"Neuroimage"},{"issue":"1","key":"21_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.neuroimage.2010.11.092","volume":"57","author":"WK Thompson","year":"2011","unstructured":"Thompson, W.K., Holland, D., Initiative, A.D.N., et al.: Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates. Neuroimage 57(1), 1\u20134 (2011)","journal-title":"Neuroimage"},{"key":"21_CR7","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1016\/j.neuroimage.2014.06.077","volume":"101","author":"H-I Suk","year":"2014","unstructured":"Suk, H.-I., Lee, S.-W., Shen, D., Initiative, A.D.N., et al.: Hierarchical feature representation and multimodal fusion with deep learning for AD\/MCI diagnosis. Neuroimage 101, 569\u2013582 (2014)","journal-title":"Neuroimage"},{"doi-asserted-by":"crossref","unstructured":"Nie, D., Wang, L., Gao, Y., Shen, D.: Fully convolutional networks for multi-modality isointense infant brain image segmentation. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1342\u20131345. IEEE (2016)","key":"21_CR8","DOI":"10.1109\/ISBI.2016.7493515"},{"key":"21_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"450","DOI":"10.1007\/978-3-319-75238-9_38","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"K Kamnitsas","year":"2018","unstructured":"Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450\u2013462. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-75238-9_38"},{"issue":"9","key":"21_CR10","doi-asserted-by":"publisher","first-page":"2772","DOI":"10.1109\/TMI.2020.2975344","volume":"39","author":"T Zhou","year":"2020","unstructured":"Zhou, T., Fu, H., Chen, G., Shen, J., Shao, L.: Hi-net: hybrid-fusion network for multi-modal MR image synthesis. IEEE Trans. Med. Imaging 39(9), 2772\u20132781 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"5","key":"21_CR11","doi-asserted-by":"publisher","first-page":"1116","DOI":"10.1109\/TMI.2018.2878669","volume":"38","author":"J Dolz","year":"2018","unstructured":"Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med. Imaging 38(5), 1116\u20131126 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"unstructured":"Billot, B., et al.: SynthSeg: Domain randomisation for segmentation of brain MRI scans of any contrast and resolution. arXiv preprint arXiv:2107.09559 (2021)","key":"21_CR12"},{"issue":"7","key":"21_CR13","doi-asserted-by":"publisher","first-page":"1167","DOI":"10.1007\/s11548-020-02170-7","volume":"15","author":"AB Szczotka","year":"2020","unstructured":"Szczotka, A.B., Shakir, D.I., Rav\u00ec, D., Clarkson, M.J., Pereira, S.P., Vercauteren, T.: Learning from irregularly sampled data for endomicroscopy super-resolution: a comparative study of sparse and dense approaches. Int. J. Comput. Assist. Radiol. Surg. 15(7), 1167\u20131175 (2020). https:\/\/doi.org\/10.1007\/s11548-020-02170-7","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"doi-asserted-by":"crossref","unstructured":"Westover, L.: Interactive volume rendering. In: Proceedings of the 1989 Chapel Hill workshop on Volume visualization, pp. 9\u201316 (1989)","key":"21_CR14","DOI":"10.1145\/329129.329138"},{"key":"21_CR15","doi-asserted-by":"publisher","first-page":"197","DOI":"10.3389\/fnins.2012.00197","volume":"6","author":"J Ashburner","year":"2013","unstructured":"Ashburner, J., Ridgway, G.R.: Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6, 197 (2013)","journal-title":"Front. Neurosci."},{"doi-asserted-by":"publisher","unstructured":"Pennec, X., Arsigny, V.: Exponential barycenters of the canonical Cartan connection and invariant means on Lie groups. In: Nielsen, F., Bhatia, R. (eds.) Matrix Information Geometry, pp. 123\u2013166. Springer, Heidelberg (2013).https:\/\/doi.org\/10.1007\/978-3-642-30232-9_7","key":"21_CR16","DOI":"10.1007\/978-3-642-30232-9_7"},{"key":"21_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"issue":"1","key":"21_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/sdata.2017.117","volume":"4","author":"S Bakas","year":"2017","unstructured":"Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1\u201313 (2017)","journal-title":"Sci. Data"},{"unstructured":"Bakas, S., et al.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection (2017). Data retrieved from the Cancer Imaging Archive, https:\/\/doi.org\/10.7937\/K9\/TCIA.2017.KLXWJJ1Q","key":"21_CR19"},{"issue":"6","key":"21_CR20","doi-asserted-by":"publisher","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","volume":"26","author":"K Clark","year":"2013","unstructured":"Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045\u20131057 (2013)","journal-title":"J. Digit. Imaging"}],"container-title":["Lecture Notes in Computer Science","Medical Image Understanding and Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-12053-4_21","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,8]],"date-time":"2024-02-08T08:06:10Z","timestamp":1707379570000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-12053-4_21"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031120527","9783031120534"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-12053-4_21","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"25 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MIUA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Annual Conference on Medical Image Understanding and Analysis","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cambridge","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 July 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 July 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miua2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miua2022.com\/home","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}