{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:28:55Z","timestamp":1742912935472,"version":"3.40.3"},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031109850"},{"type":"electronic","value":"9783031109867"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-10986-7_38","type":"book-chapter","created":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T22:30:36Z","timestamp":1658183436000},"page":"469-484","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Scientific Item Recommendation Using a Citation Network"],"prefix":"10.1007","author":[{"given":"Xu","family":"Wang","sequence":"first","affiliation":[]},{"given":"Frank","family":"van Harmelen","sequence":"additional","affiliation":[]},{"given":"Michael","family":"Cochez","sequence":"additional","affiliation":[]},{"given":"Zhisheng","family":"Huang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,19]]},"reference":[{"key":"38_CR1","doi-asserted-by":"crossref","unstructured":"Altaf, B., Akujuobi, U., Yu, L., Zhang, X.: Dataset recommendation via variational graph autoencoder. In: IEEE International Conference on Data Mining (ICDM), pp. 11\u201320 (2019)","DOI":"10.1109\/ICDM.2019.00011"},{"issue":"7546","key":"38_CR2","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1038\/520157d","volume":"520","author":"C Borgman","year":"2015","unstructured":"Borgman, C.: One scientist\u2019s data as another\u2019s noise. Nature 520(7546), 157 (2015)","journal-title":"Nature"},{"key":"38_CR3","doi-asserted-by":"publisher","unstructured":"Brickley, D., Burgess, M., Noy, N.: Google dataset search: building a search engine for datasets in an open web ecosystem. In: WWW Conference, WWW 2019, pp. 1365\u20131375. ACM (2019). https:\/\/doi.org\/10.1145\/3308558.3313685","DOI":"10.1145\/3308558.3313685"},{"key":"38_CR4","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1007\/s00778-019-00564-x","volume":"29","author":"A Chapman","year":"2019","unstructured":"Chapman, A., et al.: Dataset search: a survey. VLDB J. 29, 251\u2013272 (2019). https:\/\/doi.org\/10.1007\/s00778-019-00564-x","journal-title":"VLDB J."},{"key":"38_CR5","doi-asserted-by":"crossref","unstructured":"Chen, Y., Wang, Y., Zhang, Y., Pu, J., Zhang, X.: Amender: an attentive and aggregate multi-layered network for dataset recommendation. In: IEEE International Conference on Data Mining (ICDM), pp. 988\u2013993. IEEE (2019)","DOI":"10.1109\/ICDM.2019.00112"},{"key":"38_CR6","doi-asserted-by":"publisher","unstructured":"Chinchor, N.: MUC-4 evaluation metrics. In: Proceedings of the 4th Conference on Message Understanding, MUC4 1992, pp. 22\u201329. ACL (1992). https:\/\/doi.org\/10.3115\/1072064.1072067","DOI":"10.3115\/1072064.1072067"},{"key":"38_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"190","DOI":"10.1007\/978-3-319-68288-4_12","volume-title":"The Semantic Web \u2013 ISWC 2017","author":"M Cochez","year":"2017","unstructured":"Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space embeddings. In: d\u2019Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 190\u2013207. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-68288-4_12"},{"key":"38_CR8","doi-asserted-by":"publisher","unstructured":"Daza, D., Cochez, M., Groth, P.: Inductive entity representations from text via link prediction. In: Proceedings of The Web Conference (2021). https:\/\/doi.org\/10.1145\/3442381.3450141","DOI":"10.1145\/3442381.3450141"},{"key":"38_CR9","doi-asserted-by":"publisher","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, vol. 1, pp. 4171\u20134186. ACL, June 2019. https:\/\/doi.org\/10.18653\/v1\/N19-1423","DOI":"10.18653\/v1\/N19-1423"},{"issue":"6","key":"38_CR10","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1525\/bio.2013.63.6.10","volume":"63","author":"CS Duke","year":"2013","unstructured":"Duke, C.S., Porter, J.H.: The ethics of data sharing and reuse in biology. BioScience 63(6), 483\u2013489 (2013)","journal-title":"BioScience"},{"key":"38_CR11","doi-asserted-by":"publisher","unstructured":"Faniel, I.M., Jacobsen, T.E.: Reusing scientific data: how earthquake engineering researchers assess the reusability of colleagues\u2019 data. Comput. Supported Coop. Work 19(3\u20134), 355\u2013375 (2010). https:\/\/doi.org\/10.1007\/s10606-010-9117-8","DOI":"10.1007\/s10606-010-9117-8"},{"issue":"6","key":"38_CR12","doi-asserted-by":"publisher","first-page":"1404","DOI":"10.1002\/asi.23480","volume":"67","author":"IM Faniel","year":"2016","unstructured":"Faniel, I.M., Kriesberg, A., Yakel, E.: Social scientists\u2019 satisfaction with data reuse. J. Assoc. Inf. Sci. Technol. 67(6), 1404\u20131416 (2016)","journal-title":"J. Assoc. Inf. Sci. Technol."},{"key":"38_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1007\/978-3-030-30796-7_8","volume-title":"The Semantic Web \u2013 ISWC 2019","author":"M F\u00e4rber","year":"2019","unstructured":"F\u00e4rber, M.: The microsoft academic knowledge graph: a linked data source with 8 billion triples of scholarly data. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 113\u2013129. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-30796-7_8"},{"key":"38_CR14","doi-asserted-by":"crossref","unstructured":"F\u00e4rber, M., Leisinger, A.K.: Recommending datasets for scientific problem descriptions. In: International Conference on Information & Knowledge Management, p. 3014 (2021)","DOI":"10.1145\/3459637.3482166"},{"key":"38_CR15","doi-asserted-by":"crossref","unstructured":"Fern\u00e1ndez, J.D., Mart\u00ednez-Prieto, M.A., Guti\u00e9rrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (HDT). Web Semant. Sci. Serv. Agents World Wide Web 19, 22\u201341 (2013). http:\/\/www.websemanticsjournal.org\/index.php\/ps\/article\/view\/328","DOI":"10.1016\/j.websem.2013.01.002"},{"key":"38_CR16","unstructured":"Galkin, M., Wu, J., Denis, E., Hamilton, W.L.: NodePiece: compositional and parameter-efficient representations of large knowledge graphs. arXiv preprint arXiv:2106.12144 (2021)"},{"key":"38_CR17","doi-asserted-by":"publisher","unstructured":"Generale, A., Blume, T., Cochez, M.: Scaling R-GCN training with graph summarization (2022). https:\/\/doi.org\/10.1145\/3487553.3524719","DOI":"10.1145\/3487553.3524719"},{"key":"38_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1007\/978-3-642-30284-8_36","volume-title":"The Semantic Web: Research and Applications","author":"MA Mart\u00ednez-Prieto","year":"2012","unstructured":"Mart\u00ednez-Prieto, M.A., Arias Gallego, M., Fern\u00e1ndez, J.D.: Exchange and consumption of huge RDF data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 437\u2013452. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-30284-8_36"},{"key":"38_CR19","doi-asserted-by":"publisher","first-page":"8","DOI":"10.5334\/dsj-2017-008","volume":"16","author":"IV Pasquetto","year":"2017","unstructured":"Pasquetto, I.V., Randles, B.M., Borgman, C.L.: On the reuse of scientific data. Data Sci. J. 16, 8 (2017)","journal-title":"Data Sci. J."},{"key":"38_CR20","first-page":"1","volume":"2020","author":"BG Patra","year":"2020","unstructured":"Patra, B.G., Roberts, K., Wu, H.: A content-based dataset recommendation system for researchers-a case study on gene expression omnibus (geo) repository. Database 2020, 1 (2020)","journal-title":"Database"},{"key":"38_CR21","doi-asserted-by":"publisher","unstructured":"Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543. ACL (2014). https:\/\/doi.org\/10.3115\/v1\/D14-1162","DOI":"10.3115\/v1\/D14-1162"},{"key":"38_CR22","doi-asserted-by":"crossref","unstructured":"Pierce, H.H., Dev, A., Statham, E., Bierer, B.E.: Credit data generators for data reuse (2019)","DOI":"10.1038\/d41586-019-01715-4"},{"key":"38_CR23","doi-asserted-by":"publisher","unstructured":"Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Conference on Empirical Methods in Natural Language Processing and International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982\u20133992. ACL (2019). https:\/\/doi.org\/10.18653\/v1\/D19-1410","DOI":"10.18653\/v1\/D19-1410"},{"key":"38_CR24","unstructured":"Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.: Okapi at TREC-3. In: Overview of the 3rd Text REtrieval Conference (TREC-3), pp. 109\u2013126 (1995). https:\/\/www.microsoft.com\/en-us\/research\/publication\/okapi-at-trec-3\/"},{"issue":"8","key":"38_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0134826","volume":"10","author":"C Tenopir","year":"2015","unstructured":"Tenopir, C., et al.: Changes in data sharing and data reuse practices and perceptions among scientists worldwide. PLOS ONE 10(8), 1\u201324 (2015). https:\/\/doi.org\/10.1371\/journal.pone.0134826","journal-title":"PLOS ONE"},{"key":"38_CR26","doi-asserted-by":"crossref","unstructured":"Wang, X., van Harmelen, F., Huang, Z.: Recommending scientific datasets using author networks in ensemble methods (2022). https:\/\/datasciencehub.net\/paper\/recommending-scienti%EF%AC%81c-datasets-using-author-networks-ensemble-methods","DOI":"10.3233\/DS-220056"},{"key":"38_CR27","doi-asserted-by":"publisher","unstructured":"Wang, X., van Harmelen, F., Huang, Z.: Biomedical dataset recommendation. In: International Conference on Data Science, Technology and Applications - DATA, pp. 192\u2013199 (2021). https:\/\/doi.org\/10.5220\/0010521801920199","DOI":"10.5220\/0010521801920199"},{"issue":"1","key":"38_CR28","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/sdata.2016.18","volume":"3","author":"MD Wilkinson","year":"2016","unstructured":"Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1\u20139 (2016)","journal-title":"Sci. Data"}],"container-title":["Lecture Notes in Computer Science","Knowledge Science, Engineering and Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-10986-7_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T22:37:57Z","timestamp":1658183877000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-10986-7_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031109850","9783031109867"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-10986-7_38","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"19 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KSEM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Knowledge Science, Engineering and Management","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 August 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 August 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ksem2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ksem22.smart-conf.net\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"498","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"169","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"34% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}