{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T11:11:06Z","timestamp":1742987466390,"version":"3.40.3"},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031105449"},{"type":"electronic","value":"9783031105456"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-10545-6_41","type":"book-chapter","created":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T06:03:02Z","timestamp":1658469782000},"page":"607-624","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["On the\u00a0Applied Efficiency of\u00a0Systematic Earthquake Prediction"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1123-6433","authenticated-orcid":false,"given":"V. G.","family":"Gitis","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7063-6176","authenticated-orcid":false,"given":"A. B.","family":"Derendyaev","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0614-3515","authenticated-orcid":false,"given":"K. N.","family":"Petrov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,23]]},"reference":[{"issue":"1","key":"41_CR1","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1007\/s11071-006-2018-1","volume":"44","author":"EI Alves","year":"2006","unstructured":"Alves, E.I.: Earthquake forecasting using neural networks: results and future work. Nonlinear Dyn. 44(1), 341\u2013349 (2006)","journal-title":"Nonlinear Dyn."},{"key":"41_CR2","unstructured":"Amei, A., Fu, W., Ho, C.H.: Time series analysis for predicting the occurrences of large scale earthquakes. Int. J. Appl. Sci. Technol. 2(7) (2012)"},{"issue":"7","key":"41_CR3","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0199004","volume":"13","author":"KM Asim","year":"2018","unstructured":"Asim, K.M., Idris, A., Iqbal, T., Mart\u00ednez-\u00c1lvarez, F.: Earthquake prediction model using support vector regressor and hybrid neural networks. PLoS ONE 13(7), e0199004 (2018)","journal-title":"PLoS ONE"},{"issue":"11","key":"41_CR4","doi-asserted-by":"publisher","first-page":"1357","DOI":"10.3390\/rs11111357","volume":"11","author":"WD Barnhart","year":"2019","unstructured":"Barnhart, W.D., Hayes, G.P., Wald, D.J.: Global earthquake response with imaging geodesy: recent examples from the USGS NEIC. Remote Sens. 11(11), 1357 (2019)","journal-title":"Remote Sens."},{"key":"41_CR5","unstructured":"Bishop, C.M.: Machine learning and pattern recognition. In: Information Science and Statistics. Springer, Heidelberg (2006). ISBN:978-1-4939-3843-8"},{"key":"41_CR6","doi-asserted-by":"crossref","unstructured":"Blewitt, G., Hammond, W.C., Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science. Eos 99(10.1029), 485 (2018)","DOI":"10.1029\/2018EO104623"},{"key":"41_CR7","doi-asserted-by":"crossref","unstructured":"Corbi, F., et al.: Machine learning can predict the timing and size of analog earthquakes. Geophys. Res. Lett. 46(3), 1303\u20131311 (2019)","DOI":"10.1029\/2018GL081251"},{"key":"41_CR8","doi-asserted-by":"crossref","unstructured":"Geller, R.J., Jackson, D.D., Kagan, Y.Y., Mulargia, F.: Earthquakes cannot be predicted. Science 275(5306), 1616 (1997)","DOI":"10.1126\/science.275.5306.1616"},{"key":"41_CR9","first-page":"482","volume":"8","author":"V Gitis","year":"2020","unstructured":"Gitis, V., Derendyaev, A.: The method of the minimum area of alarm for earthquake magnitude prediction. Front. Earth Sci. 8, 482 (2020)","journal-title":"Front. Earth Sci."},{"issue":"9","key":"41_CR10","doi-asserted-by":"publisher","first-page":"1842","DOI":"10.3390\/rs13091842","volume":"13","author":"V Gitis","year":"2021","unstructured":"Gitis, V., Derendyaev, A., Petrov, K.: Analyzing the performance of GPS data for earthquake prediction. Remote Sens. 13(9), 1842 (2021)","journal-title":"Remote Sens."},{"issue":"7","key":"41_CR11","doi-asserted-by":"publisher","first-page":"308","DOI":"10.3390\/geosciences9070308","volume":"9","author":"VG Gitis","year":"2019","unstructured":"Gitis, V.G., Derendyaev, A.B.: Machine learning methods for seismic hazards forecast. Geosciences 9(7), 308 (2019)","journal-title":"Geosciences"},{"issue":"4","key":"41_CR12","doi-asserted-by":"publisher","first-page":"378","DOI":"10.5800\/GT-2011-2-4-0051","volume":"2","author":"IL Gufeld","year":"2015","unstructured":"Gufeld, I.L., Matveeva, M.I., Novoselov, O.N.: Why we cannot predict strong earthquakes in the earth\u2019s crust. Geodyn. Tectonophys. 2(4), 378\u2013415 (2015)","journal-title":"Geodyn. Tectonophys."},{"key":"41_CR13","unstructured":"Keilis-Borok, V., Soloviev, A.A.: Nonlinear dynamics of the lithosphere and earthquake prediction. Springer Science & Business Media (2013)"},{"key":"41_CR14","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1007\/978-3-642-17080-5_21","volume-title":"Artificial Intelligence and Cognitive Science","author":"Shehroz S. Khan","year":"2010","unstructured":"Khan, Shehroz S.., Madden, Michael G..: A survey of recent trends in one class classification. In: Coyle, Lorcan, Freyne, Jill (eds.) AICS 2009. LNCS (LNAI), vol. 6206, pp. 188\u2013197. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-17080-5_21"},{"issue":"B12","key":"41_CR15","doi-asserted-by":"publisher","first-page":"12269","DOI":"10.1029\/JB091iB12p12269","volume":"91","author":"CY King","year":"1986","unstructured":"King, C.Y.: Gas geochemistry applied to earthquake prediction: an overview. J. Geophys. Res. Solid Earth 91(B12), 12269\u201312281 (1986)","journal-title":"J. Geophys. Res. Solid Earth"},{"issue":"1","key":"41_CR16","doi-asserted-by":"publisher","first-page":"10","DOI":"10.3103\/S0145875209010025","volume":"64","author":"N Koronovsky","year":"2009","unstructured":"Koronovsky, N., Naimark, A.: Earthquake prediction: is it a practicable scientific perspective or a challenge to science? Mosc. Univ. Geol. Bull. 64(1), 10\u201320 (2009)","journal-title":"Mosc. Univ. Geol. Bull."},{"key":"41_CR17","doi-asserted-by":"publisher","unstructured":"Kossobokov, V., Shebalin, P.: Earthquake prediction. In: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, pp. 141\u2013207. Springer (2003). https:\/\/doi.org\/10.1007\/978-3-662-05298-3","DOI":"10.1007\/978-3-662-05298-3"},{"key":"41_CR18","first-page":"3","volume":"160","author":"SB Kotsiantis","year":"2007","unstructured":"Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3\u201324 (2007)","journal-title":"Emerg. Artif. Intell. Appl. Comput. Eng."},{"key":"41_CR19","unstructured":"Kremer, N.S.: Probability theory and mathematical statistics. YUNITI-DANA, M p. 573 (2004)"},{"key":"41_CR20","doi-asserted-by":"crossref","unstructured":"Lighthill, J.: A critical review of VAN: earthquake prediction from seismic electrical signals. World scientific (1996)","DOI":"10.1142\/3006"},{"issue":"3","key":"41_CR21","doi-asserted-by":"publisher","first-page":"442","DOI":"10.1785\/gssrl.82.3.442","volume":"82","author":"W Marzocchi","year":"2011","unstructured":"Marzocchi, W., Zechar, J.D.: Earthquake forecasting and earthquake prediction: different approaches for obtaining the best model. Seismol. Res. Lett. 82(3), 442\u2013448 (2011)","journal-title":"Seismol. Res. Lett."},{"issue":"2","key":"41_CR22","doi-asserted-by":"publisher","first-page":"1247","DOI":"10.1007\/s11069-011-9980-8","volume":"69","author":"N Matsumoto","year":"2013","unstructured":"Matsumoto, N., Koizumi, N.: Recent hydrological and geochemical research for earthquake prediction in Japan. Nat. Hazards 69(2), 1247\u20131260 (2013)","journal-title":"Nat. Hazards"},{"issue":"4","key":"41_CR23","doi-asserted-by":"publisher","first-page":"2330","DOI":"10.1785\/0220200021","volume":"91","author":"A Mignan","year":"2020","unstructured":"Mignan, A., Broccardo, M.: Neural network applications in earthquake prediction (1994\u20132019): meta-analytic and statistical insights on their limitations. Seismol. Res. Lett. 91(4), 2330\u20132342 (2020)","journal-title":"Seismol. Res. Lett."},{"issue":"12","key":"41_CR24","doi-asserted-by":"publisher","first-page":"15032","DOI":"10.1016\/j.eswa.2011.05.043","volume":"38","author":"M Moustra","year":"2011","unstructured":"Moustra, M., Avraamides, M., Christodoulou, C.: Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals. Expert Syst. Appl. 38(12), 15032\u201315039 (2011)","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"41_CR25","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1080\/17538940903548438","volume":"3","author":"S Murai","year":"2010","unstructured":"Murai, S.: Can we predict earthquakes with GPS data? Int. J. Digital Earth 3(1), 83\u201390 (2010)","journal-title":"Int. J. Digital Earth"},{"issue":"01","key":"41_CR26","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1142\/S0129065707000890","volume":"17","author":"A Panakkat","year":"2007","unstructured":"Panakkat, A., Adeli, H.: Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Int. J. Neural Syst. 17(01), 13\u201333 (2007)","journal-title":"Int. J. Neural Syst."},{"issue":"1","key":"41_CR27","doi-asserted-by":"publisher","first-page":"28","DOI":"10.17977\/um018v3i12020p28-39","volume":"3","author":"B Priambodo","year":"2020","unstructured":"Priambodo, B., Mahmudy, W.F., Rahman, M.A.: Earthquake magnitude and grid-based location prediction using backpropagation neural network. Knowl. Eng. Data Sci. 3(1), 28\u201339 (2020)","journal-title":"Knowl. Eng. Data Sci."},{"issue":"4","key":"41_CR28","doi-asserted-by":"publisher","first-page":"2203","DOI":"10.1785\/0120120233","volume":"103","author":"DA Rhoades","year":"2013","unstructured":"Rhoades, D.A.: Mixture models for improved earthquake forecasting with short-to-medium time horizons. Bull. Seismol. Soc. Am. 103(4), 2203\u20132215 (2013)","journal-title":"Bull. Seismol. Soc. Am."},{"issue":"1","key":"41_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1880-5981-66-37","volume":"66","author":"PN Shebalin","year":"2014","unstructured":"Shebalin, P.N., Narteau, C., Zechar, J.D., Holschneider, M.: Combining earthquake forecasts using differential probability gains. Earth, Planets and Space 66(1), 1\u201314 (2014). https:\/\/doi.org\/10.1186\/1880-5981-66-37","journal-title":"Earth, Planets and Space"},{"key":"41_CR30","unstructured":"Sobolev, G.: Principles of earthquake prediction (1993)"},{"key":"41_CR31","unstructured":"Sobolev, G., Ponomarev, A.: Earthquake physics and precursors. Publishing house Nauka, Moscow.-2003 (2003)"},{"key":"41_CR32","doi-asserted-by":"crossref","unstructured":"Zavyalov, A.: Intermediate term earthquake prediction. Nauka, Moscow. In: Zhang, L.Y., Mao, X.B., Lu, A.H. (eds.) (2009) Experimental Study of the Mechanical Properties of Rocks at High Temperature, Sci. China Ser. E, vol. 52(3), pp. 641\u2013646 (2006)","DOI":"10.1007\/s11431-009-0063-y"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2022 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-10545-6_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T06:15:17Z","timestamp":1658470517000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-10545-6_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031105449","9783031105456"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-10545-6_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"23 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malaga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 July 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CyberChair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"279","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"57","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"20% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8.7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"285 Workshop submission accepted out of 815 submissions","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}