{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:34:50Z","timestamp":1726169690762},"publisher-location":"Cham","reference-count":33,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031105449"},{"type":"electronic","value":"9783031105456"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-10545-6_22","type":"book-chapter","created":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T06:03:02Z","timestamp":1658469782000},"page":"311-326","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["LULC Classification Performance of Supervised and Unsupervised Algorithms on UAV-Orthomosaics"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7211-0837","authenticated-orcid":false,"given":"Mirko","family":"Saponaro","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2468-0771","authenticated-orcid":false,"given":"Eufemia","family":"Tarantino","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,23]]},"reference":[{"key":"22_CR1","volume":"89","author":"SM Hamylton","year":"2020","unstructured":"Hamylton, S.M., et al.: Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: pixel classification, visual interpretation and machine learning approaches. Int. J. Appl. Earth Obs. Geoinf. 89, 102085 (2020)","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"22_CR2","unstructured":"Alif, A.A., Shukanya, I.F., Afee, T.N.: Crop prediction based on geographical and climatic data using machine learning and deep learning. BRAC University (2018)"},{"key":"22_CR3","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436\u2013444 (2015)","journal-title":"Nature"},{"key":"22_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"420","DOI":"10.1007\/978-3-319-42108-7_32","volume-title":"Computational Science and Its Applications -- ICCSA 2016","author":"A Novelli","year":"2016","unstructured":"Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F.: Improving the ANN classification accuracy of Landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU\/LC monitoring of a river basin. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 420\u2013432. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-42108-7_32"},{"key":"22_CR5","doi-asserted-by":"crossref","unstructured":"Capolupo, A., Saponaro, M., Fratino, U., Tarantino, E.: Detection of spatio-temporal changes of vegetation in coastal areas subjected to soil erosion issue. Aquatic Ecosyst. Health Manage. 1\u20138 (2020)","DOI":"10.1080\/14634988.2020.1802983"},{"key":"22_CR6","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1093\/jpe\/rtm005","volume":"1","author":"Y Xie","year":"2008","unstructured":"Xie, Y., Sha, Z., Yu, M.: Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1, 9\u201323 (2008)","journal-title":"J. Plant Ecol."},{"key":"22_CR7","doi-asserted-by":"crossref","unstructured":"Capolupo, A., Monterisi, C., Saponaro, M., Tarantino, E.: Multi-temporal analysis of land cover changes using Landsat data through Google Earth Engine platform. In: SPIE (ed.) Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), vol. 11524 pp. 447\u2013458, August 2020","DOI":"10.1117\/12.2571228"},{"key":"22_CR8","doi-asserted-by":"publisher","first-page":"83","DOI":"10.4018\/IJAEIS.2015100105","volume":"6","author":"E Tarantino","year":"2015","unstructured":"Tarantino, E., Novelli, A., Aquilino, M., Figorito, B., Fratino, U.: Comparing the MLC and JavaNNS approaches in classifying multi-temporal LANDSAT satellite imagery over an ephemeral river area. Int. J. Agricult. Environ. Inf. Syst. (IJAEIS) 6, 83\u2013102 (2015)","journal-title":"Int. J. Agricult. Environ. Inf. Syst. (IJAEIS)"},{"key":"22_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"782","DOI":"10.1007\/978-3-030-58811-3_56","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2020","author":"A Capolupo","year":"2020","unstructured":"Capolupo, A., Monterisi, C., Caporusso, G., Tarantino, E.: Extracting land cover data using GEE: a review of the classification indices. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 782\u2013796. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58811-3_56"},{"key":"22_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"797","DOI":"10.1007\/978-3-030-58811-3_57","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2020","author":"T Sarzana","year":"2020","unstructured":"Sarzana, T., Maltese, A., Capolupo, A., Tarantino, E.: Post-processing of pixel and object-based land cover classifications of very high spatial resolution images. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 797\u2013812. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58811-3_57"},{"key":"22_CR11","first-page":"1","volume":"64","author":"RN Keyport","year":"2018","unstructured":"Keyport, R.N., Oommen, T., Martha, T.R., Sajinkumar, K., Gierke, J.S.: A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images. Int. J. Appl. Earth Obs. Geoinf. 64, 1\u201311 (2018)","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"22_CR12","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1186\/s13007-016-0134-6","volume":"12","author":"A Haghighattalab","year":"2016","unstructured":"Haghighattalab, A., et al.: Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12, 35 (2016)","journal-title":"Plant Methods"},{"key":"22_CR13","doi-asserted-by":"publisher","first-page":"1876","DOI":"10.1109\/JSTARS.2015.2422716","volume":"8","author":"C Wang","year":"2015","unstructured":"Wang, C., Myint, S.W.: A simplified empirical line method of radiometric calibration for small unmanned aircraft systems-based remote sensing. IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens. 8, 1876\u20131885 (2015)","journal-title":"IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens."},{"key":"22_CR14","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1080\/22797254.2017.1399087","volume":"51","author":"L Pompilio","year":"2018","unstructured":"Pompilio, L., et al.: Application of the empirical line method (ELM) to calibrate the airborne Daedalus-CZCS scanner. Eur. J. Remote Sens. 51, 33\u201346 (2018)","journal-title":"Eur. J. Remote Sens."},{"key":"22_CR15","doi-asserted-by":"publisher","first-page":"231","DOI":"10.5194\/isprs-archives-XLIII-B2-2021-231-2021","volume":"43","author":"M Saponaro","year":"2021","unstructured":"Saponaro, M., Capolupo, A., Caporusso, G., Tarantino, E.: Influence of co-alignment procedures on the co-registration accuracy of multi-epoch SFM points clouds. Int. Arch. Photogrammetry, Remote Sens. Spat. Inf. Sci. 43, 231\u2013238 (2021)","journal-title":"Int. Arch. Photogrammetry, Remote Sens. Spat. Inf. Sci."},{"key":"22_CR16","doi-asserted-by":"crossref","unstructured":"Saponaro, M., Capolupo, A., Caporusso, G., Borgogno Mondino, E., Tarantino, E.: Predicting the Accuracy of Photogrammetric 3D Reconstruction from Camera Calibration Parameters Through a Multivariate Statistical Approach. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2\u20132020, pp. 479\u2013486 (2020)","DOI":"10.5194\/isprs-archives-XLIII-B2-2020-479-2020"},{"key":"22_CR17","doi-asserted-by":"publisher","first-page":"3238","DOI":"10.3390\/rs13163238","volume":"13","author":"M Saponaro","year":"2021","unstructured":"Saponaro, M., Agapiou, A., Hadjimitsis, D.G., Tarantino, E.: Influence of spatial resolution for vegetation indices\u2019 extraction using visible bands from unmanned aerial vehicles\u2019 orthomosaics datasets. Remote Sens. 13, 3238 (2021)","journal-title":"Remote Sens."},{"key":"22_CR18","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45, 5\u201332 (2001)","journal-title":"Mach. Learn."},{"key":"22_CR19","doi-asserted-by":"publisher","first-page":"S44","DOI":"10.1080\/13102818.2014.949045","volume":"28","author":"YG Jung","year":"2014","unstructured":"Jung, Y.G., Kang, M.S., Heo, J.: Clustering performance comparison using K-means and expectation maximization algorithms. Biotechnol. Biotechnol. Equip. 28, S44\u2013S48 (2014)","journal-title":"Biotechnol. Biotechnol. Equip."},{"key":"22_CR20","doi-asserted-by":"publisher","first-page":"2674","DOI":"10.3390\/rs12172674","volume":"12","author":"A Capolupo","year":"2020","unstructured":"Capolupo, A., Saponaro, M., Borgogno Mondino, E., Tarantino, E.: Combining interior orientation variables to predict the accuracy of RPAS-SFM 3D models. Remote Sens. 12, 2674 (2020)","journal-title":"Remote Sens."},{"key":"22_CR21","doi-asserted-by":"publisher","first-page":"2081","DOI":"10.1002\/esp.4637","volume":"44","author":"MR James","year":"2019","unstructured":"James, M.R., et al.: Guidelines on the use of structure-from-motion photogrammetry in geomorphic research. Earth Surf. Proc. Land. 44, 2081\u20132084 (2019)","journal-title":"Earth Surf. Proc. Land."},{"key":"22_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"693","DOI":"10.1007\/978-3-030-58811-3_50","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2020","author":"M Saponaro","year":"2020","unstructured":"Saponaro, M., Turso, A., Tarantino, E.: Parallel development of comparable photogrammetric workflows based on UAV data inside SW platforms. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 693\u2013708. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58811-3_50"},{"key":"22_CR23","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1177\/0309133315615805","volume":"40","author":"MW Smith","year":"2016","unstructured":"Smith, M.W., Carrivick, J., Quincey, D.: Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr. 40, 247\u2013275 (2016)","journal-title":"Prog. Phys. Geogr."},{"key":"22_CR24","unstructured":"https:\/\/www.qgis.org\/"},{"key":"22_CR25","doi-asserted-by":"publisher","first-page":"27","DOI":"10.3390\/drones4020027","volume":"4","author":"A Agapiou","year":"2020","unstructured":"Agapiou, A.: Vegetation extraction using visible-bands from openly licensed unmanned aerial vehicle imagery. Drones 4, 27 (2020)","journal-title":"Drones"},{"key":"22_CR26","doi-asserted-by":"publisher","first-page":"1617","DOI":"10.3390\/s21051617","volume":"21","author":"A Safonova","year":"2021","unstructured":"Safonova, A., Guirado, E., Maglinets, Y., Alcaraz-Segura, D., Tabik, S.: Olive tree biovolume from UAV multi-resolution image segmentation with mask R-CNN. Sensors 21, 1617 (2021)","journal-title":"Sensors"},{"issue":"4","key":"22_CR27","doi-asserted-by":"publisher","first-page":"1225","DOI":"10.1007\/s12145-020-00498-x","volume":"13","author":"A Shukla","year":"2020","unstructured":"Shukla, A., Jain, K.: Automatic extraction of urban land information from unmanned aerial vehicle (UAV) data. Earth Sci. Inf. 13(4), 1225\u20131236 (2020). https:\/\/doi.org\/10.1007\/s12145-020-00498-x","journal-title":"Earth Sci. Inf."},{"key":"22_CR28","doi-asserted-by":"publisher","first-page":"285","DOI":"10.3390\/rs10020285","volume":"10","author":"AI De Castro","year":"2018","unstructured":"De Castro, A.I., Torres-S\u00e1nchez, J., Pe\u00f1a, J.M., Jim\u00e9nez-Brenes, F.M., Csillik, O., L\u00f3pez-Granados, F.: An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens. 10, 285 (2018)","journal-title":"Remote Sens."},{"key":"22_CR29","doi-asserted-by":"publisher","first-page":"818","DOI":"10.3390\/rs11070818","volume":"11","author":"M Belgiu","year":"2019","unstructured":"Belgiu, M., Stein, A.: Spatiotemporal image fusion in remote sensing. Remote Sens. 11, 818 (2019)","journal-title":"Remote Sens."},{"key":"22_CR30","doi-asserted-by":"publisher","DOI":"10.1016\/j.compag.2020.105385","volume":"173","author":"M Ga\u0161parovi\u0107","year":"2020","unstructured":"Ga\u0161parovi\u0107, M., Zrinjski, M., Barkovi\u0107, \u0110, Rado\u010daj, D.: An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 173, 105385 (2020)","journal-title":"Comput. Electron. Agric."},{"key":"22_CR31","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1016\/j.compag.2017.01.001","volume":"135","author":"J Tang","year":"2017","unstructured":"Tang, J., Wang, D., Zhang, Z., He, L., Xin, J., Xu, Y.: Weed identification based on K-means feature learning combined with convolutional neural network. Comput. Electron. Agric. 135, 63\u201370 (2017)","journal-title":"Comput. Electron. Agric."},{"key":"22_CR32","doi-asserted-by":"publisher","first-page":"419","DOI":"10.1016\/j.biosystemseng.2005.08.010","volume":"92","author":"E Vrindts","year":"2005","unstructured":"Vrindts, E., et al.: Management zones based on correlation between soil compaction, yield and crop data. Biosys. Eng. 92, 419\u2013428 (2005)","journal-title":"Biosys. Eng."},{"key":"22_CR33","first-page":"1","volume":"5","author":"M Hossin","year":"2015","unstructured":"Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manage. Process 5, 1 (2015)","journal-title":"Int. J. Data Min. Knowl. Manage. Process"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2022 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-10545-6_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T06:12:39Z","timestamp":1658470359000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-10545-6_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031105449","9783031105456"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-10545-6_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"23 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malaga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 July 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CyberChair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"279","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"57","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"20% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8.7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"285 Workshop submission accepted out of 815 submissions","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}