{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:28:59Z","timestamp":1726169339104},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031105210"},{"type":"electronic","value":"9783031105227"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-10522-7_38","type":"book-chapter","created":{"date-parts":[[2022,7,14]],"date-time":"2022-07-14T05:14:49Z","timestamp":1657775689000},"page":"560-574","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["A Stacking Recommender System Based on\u00a0Contextual Information for\u00a0Fashion Retails"],"prefix":"10.1007","author":[{"given":"Heitor","family":"Werneck","sequence":"first","affiliation":[]},{"given":"Nicollas","family":"Silva","sequence":"additional","affiliation":[]},{"given":"Carlos","family":"Mito","sequence":"additional","affiliation":[]},{"given":"Adriano","family":"Pereira","sequence":"additional","affiliation":[]},{"given":"Elisa","family":"Tuler","sequence":"additional","affiliation":[]},{"given":"Diego","family":"Dias","sequence":"additional","affiliation":[]},{"given":"Leonardo","family":"Rocha","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,15]]},"reference":[{"issue":"6","key":"38_CR1","doi-asserted-by":"publisher","first-page":"734","DOI":"10.1109\/TKDE.2005.99","volume":"17","author":"G Adomavicius","year":"2005","unstructured":"Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734\u2013749 (2005)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"38_CR2","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1007\/978-0-387-85820-3_7","volume-title":"Recommender Systems Handbook","author":"G Adomavicius","year":"2011","unstructured":"Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217\u2013253. Springer, Boston, MA (2011). https:\/\/doi.org\/10.1007\/978-0-387-85820-3_7"},{"issue":"24","key":"38_CR3","first-page":"38","volume":"71","author":"S Akshita","year":"2013","unstructured":"Akshita, S., Smita, A.: Recommender system: review. Int. J. Comput. Appl. 71(24), 38\u201342 (2013)","journal-title":"Int. J. Comput. Appl."},{"key":"38_CR4","doi-asserted-by":"crossref","unstructured":"Bao, X., Bergman, L., Thompson, R.: Stacking recommendation engines with additional meta-features. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 109\u2013116 (2009)","DOI":"10.1145\/1639714.1639734"},{"key":"38_CR5","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1016\/j.knosys.2013.03.012","volume":"46","author":"J Bobadilla","year":"2013","unstructured":"Bobadilla, J., Ortega, F., Hernando, A., Guti\u00e9rrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109\u2013132 (2013)","journal-title":"Knowl.-Based Syst."},{"key":"38_CR6","doi-asserted-by":"crossref","unstructured":"Brovman, Y.M., et al.: Optimizing similar item recommendations in a semi-structured marketplace to maximize conversion. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 199\u2013202 (2016)","DOI":"10.1145\/2959100.2959166"},{"key":"38_CR7","doi-asserted-by":"crossref","unstructured":"Cheng, H.-T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7\u201310 (2016)","DOI":"10.1145\/2988450.2988454"},{"key":"38_CR8","doi-asserted-by":"publisher","first-page":"469","DOI":"10.1016\/j.ins.2020.05.094","volume":"540","author":"M Dong","year":"2020","unstructured":"Dong, M., Zeng, X., Koehl, L., Zhang, J.: An interactive knowledge-based recommender system for fashion product design in the big data environment. Inf. Sci. 540, 469\u2013488 (2020)","journal-title":"Inf. Sci."},{"key":"38_CR9","unstructured":"Farfetch (2021)"},{"key":"38_CR10","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1007\/978-3-662-49381-6_2","volume-title":"Intelligent Information and Database Systems","author":"D Frejlichowski","year":"2016","unstructured":"Frejlichowski, D., Czapiewski, P., Hofman, R.: Finding similar clothes based on semantic description for the purpose of fashion recommender system. In: Nguyen, N.T., Trawi\u0144ski, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9621, pp. 13\u201322. Springer, Heidelberg (2016). https:\/\/doi.org\/10.1007\/978-3-662-49381-6_2"},{"key":"38_CR11","doi-asserted-by":"crossref","unstructured":"Haruna, K., et al.: Context-aware recommender system: a review of recent developmental process and future research direction. Appl. Sci. 7(12), 1211 (2017)","DOI":"10.3390\/app7121211"},{"key":"38_CR12","doi-asserted-by":"crossref","unstructured":"He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: proceedings of the 25th International Conference on World Wide Web, pp. 507\u2013517 (2016)","DOI":"10.1145\/2872427.2883037"},{"key":"38_CR13","doi-asserted-by":"crossref","unstructured":"He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation (2020)","DOI":"10.1145\/3397271.3401063"},{"key":"38_CR14","doi-asserted-by":"crossref","unstructured":"He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173\u2013182 (2017)","DOI":"10.1145\/3038912.3052569"},{"key":"38_CR15","doi-asserted-by":"crossref","unstructured":"Hu, Y., Yi, X., Davis, L.S.: Collaborative fashion recommendation: a functional tensor factorization approach. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 129\u2013138 (2015)","DOI":"10.1145\/2733373.2806239"},{"issue":"4","key":"38_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3370082","volume":"10","author":"D Jannach","year":"2019","unstructured":"Jannach, D., Jugovac, M.: Measuring the business value of recommender systems. ACM Trans. Manag. Inf. Syst. (TMIS) 10(4), 1\u201323 (2019)","journal-title":"ACM Trans. Manag. Inf. Syst. (TMIS)"},{"key":"38_CR17","doi-asserted-by":"crossref","unstructured":"Kang, W.-C., Fang, C., Wang, Z., McAuley, J.: Visually-aware fashion recommendation and design with generative image models. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 207\u2013216. IEEE (2017)","DOI":"10.1109\/ICDM.2017.30"},{"key":"38_CR18","series-title":"Lecture Notes in Electrical Engineering","doi-asserted-by":"publisher","first-page":"1179","DOI":"10.1007\/978-981-10-0557-2_112","volume-title":"Information Science and Applications (ICISA) 2016","author":"S Khusro","year":"2016","unstructured":"Khusro, S., Ali, Z., Ullah, I.: Recommender systems: issues, challenges, and research opportunities. In: Kim, K., Joukov, N. (eds.) Information Science and Applications (ICISA) 2016. LNEE, vol. 376, pp. 1179\u20131189. Springer, Singapore (2016). https:\/\/doi.org\/10.1007\/978-981-10-0557-2_112"},{"key":"38_CR19","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"issue":"1","key":"38_CR20","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1007\/s11257-011-9112-x","volume":"22","author":"JA Konstan","year":"2012","unstructured":"Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adap. Inter. 22(1), 101\u2013123 (2012)","journal-title":"User Model. User-Adap. Inter."},{"key":"38_CR21","doi-asserted-by":"crossref","unstructured":"Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426\u2013434 (2008)","DOI":"10.1145\/1401890.1401944"},{"key":"38_CR22","unstructured":"Lee, D., Hosanagar, K.: Impact of recommender systems on sales volume and diversity (2014)"},{"key":"38_CR23","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1007\/978-3-319-13817-6_6","volume-title":"Mining Intelligence and Knowledge Exploration","author":"HT Nguyen","year":"2014","unstructured":"Nguyen, H.T., et al.: Learning to rank for personalised fashion recommender systems via implicit feedback. In: Prasath, R., O\u2019Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS (LNAI), vol. 8891, pp. 51\u201361. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-13817-6_6"},{"key":"38_CR24","unstructured":"Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)"},{"key":"38_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-0-387-85820-3_1","volume-title":"Recommender Systems Handbook","author":"F Ricci","year":"2011","unstructured":"Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1\u201335. Springer, Boston, MA (2011). https:\/\/doi.org\/10.1007\/978-0-387-85820-3_1"},{"key":"38_CR26","series-title":"Lecture Notes in Geoinformation and Cartography","doi-asserted-by":"publisher","first-page":"451","DOI":"10.1007\/978-3-319-60801-3_27","volume-title":"Geomatic Approaches for Modeling Land Change Scenarios","author":"H Taud","year":"2018","unstructured":"Taud, H., Mas, J.F.: Multilayer perceptron (MLP). In: Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F., Escobar, F. (eds.) Geomatic Approaches for Modeling Land Change Scenarios. LNGC, pp. 451\u2013455. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-60801-3_27"},{"key":"38_CR27","doi-asserted-by":"crossref","unstructured":"Wakita, Y., Oku, K., Huang, H.-H., Kawagoe, K.: A fashion-brand recommender system using brand association rules and features. In: 2015 IIAI 4th International Congress on Advanced Applied Informatics, pp. 719\u2013720. IEEE (2015)","DOI":"10.1109\/IIAI-AAI.2015.230"},{"issue":"1","key":"38_CR28","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1109\/THMS.2014.2364398","volume":"45","author":"L Wang","year":"2014","unstructured":"Wang, L., Zeng, X., Koehl, L., Chen, Y.: Intelligent fashion recommender system: fuzzy logic in personalized garment design. IEEE Trans. Hum.-Mach. Syst. 45(1), 95\u2013109 (2014)","journal-title":"IEEE Trans. Hum.-Mach. Syst."},{"key":"38_CR29","doi-asserted-by":"crossref","unstructured":"Wu, J., et al.: Self-supervised graph learning for recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 726\u2013735 (2021)","DOI":"10.1145\/3404835.3462862"},{"key":"38_CR30","doi-asserted-by":"crossref","unstructured":"Yin, R., Li, K., Lu, J., Zhang, G.: Enhancing fashion recommendation with visual compatibility relationship. In: The World Wide Web Conference, pp. 3434\u20133440 (2019)","DOI":"10.1145\/3308558.3313739"},{"key":"38_CR31","doi-asserted-by":"crossref","unstructured":"Zeng, X., Koehl, L., Wang, L., Chen, Y.: An intelligent recommender system for personalized fashion design. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA\/NAFIPS), pp. 760\u2013765. IEEE (2013)","DOI":"10.1109\/IFSA-NAFIPS.2013.6608496"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-10522-7_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,14]],"date-time":"2022-07-14T05:24:17Z","timestamp":1657776257000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-10522-7_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031105210","9783031105227"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-10522-7_38","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"15 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malaga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 July 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CyberChair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"279","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"57","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"20% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8.7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"285 Workshop submission accepted out of 815 submissions","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}