{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:12:47Z","timestamp":1728177167564},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031090011"},{"type":"electronic","value":"9783031090028"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-09002-8_2","type":"book-chapter","created":{"date-parts":[[2022,7,14]],"date-time":"2022-07-14T08:05:34Z","timestamp":1657785934000},"page":"15-29","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":43,"title":["Optimized U-Net for\u00a0Brain Tumor Segmentation"],"prefix":"10.1007","author":[{"given":"Micha\u0142","family":"Futrega","sequence":"first","affiliation":[]},{"given":"Alexandre","family":"Milesi","sequence":"additional","affiliation":[]},{"given":"Micha\u0142","family":"Marcinkiewicz","sequence":"additional","affiliation":[]},{"given":"Pablo","family":"Ribalta","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,15]]},"reference":[{"key":"2_CR1","doi-asserted-by":"publisher","unstructured":"Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205 (2012). https:\/\/doi.org\/10.1016\/j.cancergen.2012.10.009","DOI":"10.1016\/j.cancergen.2012.10.009"},{"issue":"3","key":"2_CR2","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211\u2013252 (2015). https:\/\/doi.org\/10.1007\/s11263-015-0816-y","journal-title":"Int. J. Comput. Vision"},{"key":"2_CR3","doi-asserted-by":"publisher","unstructured":"Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555\u20132562 (2017). https:\/\/doi.org\/10.1093\/bioinformatics\/btx188","DOI":"10.1093\/bioinformatics\/btx188"},{"key":"2_CR4","unstructured":"Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)"},{"issue":"10","key":"2_CR5","doi-asserted-by":"publisher","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","volume":"34","author":"BH Menze","year":"2015","unstructured":"Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993\u20132024 (2015). https:\/\/doi.org\/10.1109\/TMI.2014.2377694","journal-title":"IEEE Trans. Med. Imaging"},{"key":"2_CR6","doi-asserted-by":"publisher","unstructured":"Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https:\/\/doi.org\/10.1038\/sdata.2017.117","DOI":"10.1038\/sdata.2017.117"},{"key":"2_CR7","doi-asserted-by":"publisher","unstructured":"Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https:\/\/doi.org\/10.7937\/K9\/TCIA.2017.KLXWJJ1Q","DOI":"10.7937\/K9\/TCIA.2017.KLXWJJ1Q"},{"key":"2_CR8","doi-asserted-by":"publisher","unstructured":"Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https:\/\/doi.org\/10.7937\/K9\/TCIA.2017.GJQ7R0EF","DOI":"10.7937\/K9\/TCIA.2017.GJQ7R0EF"},{"key":"2_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"2_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1007\/978-3-030-11726-9_28","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"A Myronenko","year":"2019","unstructured":"Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311\u2013320. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-11726-9_28"},{"key":"2_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1007\/978-3-030-46640-4_22","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"Z Jiang","year":"2020","unstructured":"Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231\u2013241. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-46640-4_22"},{"key":"2_CR12","doi-asserted-by":"crossref","unstructured":"Isensee, F., J\u00e4ger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 1\u20139 (2020)","DOI":"10.1038\/s41592-020-01008-z"},{"key":"2_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"118","DOI":"10.1007\/978-3-030-72087-2_11","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"F Isensee","year":"2021","unstructured":"Isensee, F., J\u00e4ger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118\u2013132. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-72087-2_11"},{"key":"2_CR14","unstructured":"Oktay, O., et al.: Attention U-net: learning where to look for the pancreas (2018)"},{"key":"2_CR15","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)","DOI":"10.1109\/CVPR.2016.90"},{"key":"2_CR16","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2016)","DOI":"10.1109\/CVPR.2017.243"},{"key":"2_CR17","unstructured":"Szegedy, C., et al.: Deep residual learning for image recognition (2014)"},{"key":"2_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-00889-5_1","volume-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","author":"Z Zhou","year":"2018","unstructured":"Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA\/ML-CDS -2018. LNCS, vol. 11045, pp. 3\u201311. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00889-5_1"},{"key":"2_CR19","doi-asserted-by":"crossref","unstructured":"Hatamizadeh, A., Yang, D., Roth, H., Xu, D.: UNETR: transformers for 3D medical image segmentation (2021)","DOI":"10.1109\/WACV51458.2022.00181"},{"key":"2_CR20","doi-asserted-by":"crossref","unstructured":"Zhu, Q., Du, B., Turkbey, B., Choyke, P.L., Yan, P.: Deeply-supervised CNN for prostate segmentation (2017)","DOI":"10.1109\/IJCNN.2017.7965852"},{"key":"2_CR21","unstructured":"Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks (2018)"},{"key":"2_CR22","unstructured":"Cox, R., Ashburner, J., et al.: A (sort of) new image data format standard: NiFTI-1, vol. 22, January 2004"},{"key":"2_CR23","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2014)"},{"key":"2_CR24","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2021)"},{"key":"2_CR25","unstructured":"Vaswani, A., et al.: Attention is all you need (2017)"},{"key":"2_CR26","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: International Conference on Computer Vision (ICCV) (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"2_CR27","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision (3DV) (2016)","DOI":"10.1109\/3DV.2016.79"},{"key":"2_CR28","unstructured":"Paszke, A., Gross, et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d\u2019Alch\u00e9-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024\u20138035. Curran Associates, Inc. (2019). http:\/\/papers.neurips.cc\/paper\/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf"},{"key":"2_CR29","unstructured":"Micikevicius, P., et al.: Mixed precision training (2018)"},{"key":"2_CR30","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)"},{"key":"2_CR31","unstructured":"Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts (2017)"},{"key":"2_CR32","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification (2015)","DOI":"10.1109\/ICCV.2015.123"}],"container-title":["Lecture Notes in Computer Science","Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-09002-8_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,14]],"date-time":"2022-07-14T08:06:22Z","timestamp":1657785982000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-09002-8_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031090011","9783031090028"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-09002-8_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"15 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BrainLes","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International MICCAI Brainlesion Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwb2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.brainlesion-workshop.org\/?msclkid=7759e32ed14111ecba82c5ba435279db","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"151","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"91","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"60% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}