{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T18:39:28Z","timestamp":1726166368888},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031082221"},{"type":"electronic","value":"9783031082238"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-08223-8_42","type":"book-chapter","created":{"date-parts":[[2022,6,14]],"date-time":"2022-06-14T14:11:04Z","timestamp":1655215864000},"page":"517-528","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Text Analysis of\u00a0COVID-19 Tweets"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8607-5518","authenticated-orcid":false,"given":"Panagiotis C.","family":"Theocharopoulos","sequence":"first","affiliation":[]},{"given":"Anastasia","family":"Tsoukala","sequence":"additional","affiliation":[]},{"given":"Spiros V.","family":"Georgakopoulos","sequence":"additional","affiliation":[]},{"given":"Sotiris K.","family":"Tasoulis","sequence":"additional","affiliation":[]},{"given":"Vassilis P.","family":"Plagianakos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,6,10]]},"reference":[{"key":"42_CR1","unstructured":"Sentiment analysis of covid-19 related tweets (2021). https:\/\/www.kaggle.com\/c\/sentiment-analysis-of-covid-19-related-tweets\/data"},{"issue":"1","key":"42_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1057\/s41599-022-01092-w","volume":"9","author":"J Bullock","year":"2022","unstructured":"Bullock, J., Lane, J.E., Shults, F.L.: What causes covid-19 vaccine hesitancy? ignorance and the lack of bliss in the united kingdom. Humanit. Soc. Sci. Commun. 9(1), 1\u20137 (2022)","journal-title":"Humanit. Soc. Sci. Commun."},{"key":"42_CR3","unstructured":"contributors, W.: List of covid-19 vaccine authorizations - Wikipedia, the free encyclopedia. https:\/\/en.wikipedia.org\/w\/index.php?title=List_of_COVID-19_vaccine_authorizations&oldid=1081403177 (2022), [Online; accessed 11-April-2022]"},{"key":"42_CR4","doi-asserted-by":"publisher","first-page":"33203","DOI":"10.1109\/ACCESS.2021.3059821","volume":"9","author":"LA Cotfas","year":"2021","unstructured":"Cotfas, L.A., Delcea, C., Roxin, I., Ioan\u0103\u015f, C., Gherai, D.S., Tajariol, F.: The longest month: analyzing covid-19 vaccination opinions dynamics from tweets in the month following the first vaccine announcement. IEEE Access 9, 33203\u201333223 (2021)","journal-title":"IEEE Access"},{"key":"42_CR5","unstructured":"Devlin, J., Chang, M.W., Lee, K., Google, K., Language, A.: Bert: pre-training of deep bidirectional transformers for language understanding (2019). https:\/\/arxiv.org\/pdf\/1810.04805.pdf"},{"issue":"9","key":"42_CR6","doi-asserted-by":"publisher","first-page":"2868","DOI":"10.1080\/21645515.2021.1911216","volume":"17","author":"E Engel-Rebitzer","year":"2021","unstructured":"Engel-Rebitzer, E., Stokes, D.C., Buttenheim, A., Purtle, J., Meisel, Z.F.: Changes in legislator vaccine-engagement on twitter before and after the arrival of the covid-19 pandemic. Hum. vaccines Immunotherapeutics 17(9), 2868\u20132872 (2021)","journal-title":"Hum. vaccines Immunotherapeutics"},{"key":"42_CR7","doi-asserted-by":"crossref","unstructured":"Georgakopoulos, S.V., Tasoulis, S.K., Vrahatis, A.G., Plagianakos, V.P.: Convolutional neural networks for toxic comment classification. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence, pp. 1\u20136 (2018)","DOI":"10.1145\/3200947.3208069"},{"key":"42_CR8","doi-asserted-by":"publisher","unstructured":"Gerretsen, P., et al.: Individual determinants of covid-19 vaccine hesitancy. PLOS ONE 16(11), 1\u201314 (2021). https:\/\/doi.org\/10.1371\/journal.pone.0258462","DOI":"10.1371\/journal.pone.0258462"},{"issue":"30","key":"42_CR9","doi-asserted-by":"publisher","first-page":"4034","DOI":"10.1016\/j.vaccine.2021.06.014","volume":"39","author":"SC Guntuku","year":"2021","unstructured":"Guntuku, S.C., Buttenheim, A.M., Sherman, G., Merchant, R.M.: Twitter discourse reveals geographical and temporal variation in concerns about covid-19 vaccines in the united states. Vaccine 39(30), 4034\u20134038 (2021)","journal-title":"Vaccine"},{"key":"42_CR10","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/j.puhe.2021.11.022","volume":"203","author":"K Hayawi","year":"2022","unstructured":"Hayawi, K., Shahriar, S., Serhani, M.A., Taleb, I., Mathew, S.S.: Anti-vax: a novel twitter dataset for covid-19 vaccine misinformation detection. Public Health 203, 23\u201330 (2022)","journal-title":"Public Health"},{"issue":"19","key":"42_CR11","doi-asserted-by":"publisher","first-page":"2684","DOI":"10.1016\/j.vaccine.2021.03.061","volume":"39","author":"BL Hoffman","year":"2021","unstructured":"Hoffman, B.L., et al.: # doctorsspeakup: lessons learned from a pro-vaccine twitter event. Vaccine 39(19), 2684\u20132691 (2021)","journal-title":"Vaccine"},{"key":"42_CR12","doi-asserted-by":"publisher","unstructured":"Lamsal, R.: Coronavirus (covid-19) tweets dataset (2020). https:\/\/doi.org\/10.21227\/781w-ef42","DOI":"10.21227\/781w-ef42"},{"issue":"5","key":"42_CR13","doi-asserted-by":"publisher","first-page":"2790","DOI":"10.1007\/s10489-020-02029-z","volume":"51","author":"R Lamsal","year":"2021","unstructured":"Lamsal, R.: Design and analysis of a large-scale covid-19 tweets dataset. Appl. Intell. 51(5), 2790\u20132804 (2021)","journal-title":"Appl. Intell."},{"key":"42_CR14","doi-asserted-by":"crossref","unstructured":"Lin, J., Ryaboy, D.: Scaling big data mining infrastructure: the twitter experience. Acm SIGKDD Explor. Newsl. 14(2), 6\u201319 (2013)","DOI":"10.1145\/2481244.2481247"},{"key":"42_CR15","doi-asserted-by":"crossref","unstructured":"Machado, M.D.A.V., Roberts, B., Wong, B.L.H., van Kessel, R., Mossialos, E.: The relationship between the covid-19 pandemic and vaccine hesitancy: a scoping review. Front. Public Health 9, 1370 (2021)","DOI":"10.3389\/fpubh.2021.747787"},{"issue":"6","key":"42_CR16","doi-asserted-by":"publisher","first-page":"3265","DOI":"10.3390\/ijerph19063265","volume":"19","author":"A Recio-Rom\u00e1n","year":"2022","unstructured":"Recio-Rom\u00e1n, A., Recio-Men\u00e9ndez, M., Rom\u00e1n-Gonz\u00e1lez, M.V.: Political populism, institutional distrust and vaccination uptake: a mediation analysis. Int. J. Environ. Res. Public Health 19(6), 3265 (2022)","journal-title":"Int. J. Environ. Res. Public Health"},{"key":"42_CR17","doi-asserted-by":"publisher","unstructured":"Sarirete, A.: Sentiment analysis tracking of covid-19 vaccine through tweets. J. Ambient Intell. Humanized Comput. 1\u20139 (2022). https:\/\/doi.org\/10.1007\/s12652-022-03805-0","DOI":"10.1007\/s12652-022-03805-0"},{"issue":"13","key":"42_CR18","doi-asserted-by":"publisher","first-page":"6128","DOI":"10.3390\/app11136128","volume":"11","author":"NS Sattar","year":"2021","unstructured":"Sattar, N.S., Arifuzzaman, S.: Covid-19 vaccination awareness and aftermath: public sentiment analysis on twitter data and vaccinated population prediction in the usa. Appl. Sci. 11(13), 6128 (2021)","journal-title":"Appl. Sci."},{"key":"42_CR19","doi-asserted-by":"crossref","unstructured":"Shamrat, F., et al.: Sentiment analysis on twitter tweets about covid-19 vaccines using NLP and supervised KNN classification algorithm. Indones. J. Electr. Eng. Comput. Sci. 23(1), 463\u2013470 (2021)","DOI":"10.11591\/ijeecs.v23.i1.pp463-470"},{"issue":"1","key":"42_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s13278-021-00737-z","volume":"11","author":"M Singh","year":"2021","unstructured":"Singh, M., Jakhar, A.K., Pandey, S.: Sentiment analysis on the impact of coronavirus in social life using the BERT model. Soc. Netw. Anal. Min. 11(1), 1\u201311 (2021)","journal-title":"Soc. Netw. Anal. Min."},{"key":"42_CR21","unstructured":"Vaswani, A., et al.: Attention is all you need. https:\/\/arxiv.org\/pdf\/1706.03762v5.pdf"},{"key":"42_CR22","doi-asserted-by":"publisher","unstructured":"Wicke, P., Bolognesi, M.M.: Covid-19 discourse on twitter: how the topics, sentiments, subjectivity, and figurative frames changed over time. Front. Commun. 6 (2021). https:\/\/doi.org\/10.3389\/fcomm.2021.651997","DOI":"10.3389\/fcomm.2021.651997"},{"key":"42_CR23","doi-asserted-by":"crossref","unstructured":"Zhou, J., Ye, J.M.: Sentiment analysis in education research: a review of journal publications. Interact. Learn. Environ. 1\u201313 (2020)","DOI":"10.1080\/10494820.2020.1826985"}],"container-title":["Communications in Computer and Information Science","Engineering Applications of Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-08223-8_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,14]],"date-time":"2022-06-14T14:16:45Z","timestamp":1655216205000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-08223-8_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031082221","9783031082238"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-08223-8_42","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"10 June 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chersonisos, Crete","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 June 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 June 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eannconf.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}