{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T09:40:38Z","timestamp":1743154838846,"version":"3.40.3"},"publisher-location":"Cham","reference-count":34,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031077036"},{"type":"electronic","value":"9783031077043"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-07704-3_27","type":"book-chapter","created":{"date-parts":[[2022,6,7]],"date-time":"2022-06-07T13:13:06Z","timestamp":1654607586000},"page":"330-342","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Estimating Frontal Body Landmarks from\u00a0Thermal Sensors Using Residual Neural Networks"],"prefix":"10.1007","author":[{"given":"Aurora","family":"Polo-Rodr\u00edguez","sequence":"first","affiliation":[]},{"given":"Marcos","family":"Lupi\u00f3n","sequence":"additional","affiliation":[]},{"given":"Pilar M.","family":"Ortigosa","sequence":"additional","affiliation":[]},{"given":"Javier","family":"Medina-Quero","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,6,8]]},"reference":[{"key":"27_CR1","doi-asserted-by":"crossref","unstructured":"Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of Things (IoT) communication protocols. In: 2017 8th International Conference on Information Technology (ICIT), pp. 685\u2013690. IEEE (2017)","DOI":"10.1109\/ICITECH.2017.8079928"},{"key":"27_CR2","doi-asserted-by":"crossref","unstructured":"Ali Hamad, R., J\u00e4rpe, E., Lundstr\u00f6m, J.: Stability analysis of the t-SNE algorithm for human activity pattern data. In: The 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2018) (2018)","DOI":"10.1109\/SMC.2018.00318"},{"key":"27_CR3","doi-asserted-by":"crossref","unstructured":"Badave, H., Kuber, M.: Evaluation of person recognition accuracy based on openpose parameters. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 635\u2013640. IEEE (2021)","DOI":"10.1109\/ICICCS51141.2021.9432108"},{"issue":"1","key":"27_CR4","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1109\/TPAMI.2019.2929257","volume":"43","author":"Z Cao","year":"2019","unstructured":"Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172\u2013186 (2019)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"27_CR5","doi-asserted-by":"crossref","unstructured":"Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291\u20137299 (2017)","DOI":"10.1109\/CVPR.2017.143"},{"key":"27_CR6","unstructured":"Csurka, G.: Domain adaptation for visual applications: a comprehensive survey. arXiv preprint arXiv:1702.05374 (2017)"},{"issue":"7","key":"27_CR7","doi-asserted-by":"publisher","first-page":"2330","DOI":"10.3390\/s21072330","volume":"21","author":"\u00c1V Espinosa","year":"2021","unstructured":"Espinosa, \u00c1.V., L\u00f3pez, J.L.L., Mata, F.M., Estevez, M.E.E.: Application of IoT in healthcare: keys to implementation of the sustainable development goals. Sensors 21(7), 2330 (2021)","journal-title":"Sensors"},{"issue":"4","key":"27_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3161198","volume":"1","author":"E Griffiths","year":"2018","unstructured":"Griffiths, E., Assana, S., Whitehouse, K.: Privacy-preserving image processing with binocular thermal cameras. Proc. ACM Interact. Mob. Wearab. Ubiquit. Technol. 1(4), 1\u201325 (2018)","journal-title":"Proc. ACM Interact. Mob. Wearab. Ubiquit. Technol."},{"key":"27_CR9","unstructured":"Han, J., Bhanu, B.: Human activity recognition in thermal infrared imagery. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005)-Workshops, pp. 17. IEEE (2005)"},{"key":"27_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"27_CR11","unstructured":"Hidalgo, G., Raaj, Y., Idrees, H., Xiang, D., Joo, H., Simon, T., Sheikh, Y.: Single-network whole-body pose estimation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 6982\u20136991 (2019)"},{"key":"27_CR12","series-title":"Intelligent Systems Reference Library","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1007\/978-981-13-8759-3_4","volume-title":"Multimedia Big Data Computing for IoT Applications","author":"S Hiriyannaiah","year":"2020","unstructured":"Hiriyannaiah, S., Akanksh, B.S., Koushik, A.S., Siddesh, G.M., Srinivasa, K.G.: Deep learning for multimedia data in IoT. In: Tanwar, S., Tyagi, S., Kumar, N. (eds.) Multimedia Big Data Computing for IoT Applications. ISRL, vol. 163, pp. 101\u2013129. Springer, Singapore (2020). https:\/\/doi.org\/10.1007\/978-981-13-8759-3_4"},{"issue":"1","key":"27_CR13","doi-asserted-by":"publisher","first-page":"41","DOI":"10.17977\/um018v2i12019p41-46","volume":"2","author":"IKM Jais","year":"2019","unstructured":"Jais, I.K.M., Ismail, A.R., Nisa, S.Q.: Adam optimization algorithm for wide and deep neural network. Knowl. Eng. Data Sci. 2(1), 41\u201346 (2019)","journal-title":"Knowl. Eng. Data Sci."},{"key":"27_CR14","doi-asserted-by":"crossref","unstructured":"Jara-Quito, H.J., Guerrero-Vasquez, L.F., Parra-Luzuriaga, K.A., Ojeda-Sanchez, M.V., Bravo-Torres, J.F.: Avatar: human-computer interface for interaction with children using a live animation process based in facial and body landmarks recognition. In: 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 715\u2013720. IEEE (2021)","DOI":"10.1109\/ICCCIS51004.2021.9397219"},{"key":"27_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"196","DOI":"10.1007\/978-3-030-58545-7_12","volume-title":"Computer Vision \u2013 ECCV 2020","author":"S Jin","year":"2020","unstructured":"Jin, S., et al.: Whole-body human pose estimation in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 196\u2013214. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58545-7_12"},{"key":"27_CR16","doi-asserted-by":"crossref","unstructured":"Kong, X., Meng, Z., Meng, L., Tomiyama, H.: A privacy protected fall detection IoT system for elderly persons using depth camera. In: 2018 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 31\u201335. IEEE (2018)","DOI":"10.1109\/ICAMechS.2018.8506987"},{"key":"27_CR17","doi-asserted-by":"crossref","unstructured":"Li, X., Liu, Y., Wang, Y., Yan, D.: Computing homography with RANSAC algorithm: a novel method of registration. In: Electronic Imaging and Multimedia Technology IV, vol. 5637, pp. 109\u2013112. International Society for Optics and Photonics (2005)","DOI":"10.1117\/12.579121"},{"issue":"1","key":"27_CR18","doi-asserted-by":"publisher","first-page":"709","DOI":"10.3233\/JIFS-179443","volume":"38","author":"M L\u00f3pez-Medina","year":"2020","unstructured":"L\u00f3pez-Medina, M., Espinilla, M., Cleland, I., Nugent, C., Medina, J.: Fuzzy cloud-fog computing approach application for human activity recognition in smart homes. J. Intell. Fuzzy Syst. 38(1), 709\u2013721 (2020)","journal-title":"J. Intell. Fuzzy Syst."},{"issue":"11","key":"27_CR19","doi-asserted-by":"publisher","first-page":"4207","DOI":"10.1109\/TCSVT.2019.2952779","volume":"30","author":"A Mart\u00ednez-Gonz\u00e1lez","year":"2019","unstructured":"Mart\u00ednez-Gonz\u00e1lez, A., Villamizar, M., Can\u00e9vet, O., Odobez, J.M.: Efficient convolutional neural networks for depth-based multi-person pose estimation. IEEE Trans. Circuits Syst. Video Technol. 30(11), 4207\u20134221 (2019)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"27_CR20","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1016\/j.eswa.2018.07.068","volume":"114","author":"J Medina-Quero","year":"2018","unstructured":"Medina-Quero, J., Zhang, S., Nugent, C., Espinilla, M.: Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Syst. Appl. 114, 441\u2013453 (2018)","journal-title":"Expert Syst. Appl."},{"key":"27_CR21","doi-asserted-by":"crossref","unstructured":"Mohammadmoradi, H., Munir, S., Gnawali, O., Shelton, C.: Measuring people-flow through doorways using easy-to-install IR array sensors. In: 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 35\u201343. IEEE (2017)","DOI":"10.1109\/DCOSS.2017.26"},{"issue":"1","key":"27_CR22","doi-asserted-by":"publisher","first-page":"115","DOI":"10.3390\/s16010115","volume":"16","author":"FJ Ord\u00f3\u00f1ez","year":"2016","unstructured":"Ord\u00f3\u00f1ez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)","journal-title":"Sensors"},{"key":"27_CR23","doi-asserted-by":"crossref","unstructured":"Osokin, D.: Real-time 2D multi-person pose estimation on CPU: lightweight openpose. arXiv preprint arXiv:1811.12004 (2018)","DOI":"10.5220\/0007555407440748"},{"key":"27_CR24","doi-asserted-by":"crossref","unstructured":"Patricia, N., Caputo, B.: Learning to learn, from transfer learning to domain adaptation: a unifying perspective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1442\u20131449 (2014)","DOI":"10.1109\/CVPR.2014.187"},{"key":"27_CR25","doi-asserted-by":"publisher","first-page":"228804","DOI":"10.1109\/ACCESS.2020.3046181","volume":"8","author":"A Polo-Rodriguez","year":"2020","unstructured":"Polo-Rodriguez, A., Cruciani, F., Nugent, C.D., Medina, J.: Domain adaptation of binary sensors in smart environments through activity alignment. IEEE Access 8, 228804\u2013228817 (2020)","journal-title":"IEEE Access"},{"key":"27_CR26","doi-asserted-by":"crossref","unstructured":"Quero, J.M., Burns, M., Razzaq, M.A., Nugent, C., Espinilla, M.: Detection of falls from non-invasive thermal vision sensors using convolutional neural networks. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 1236 (2018)","DOI":"10.3390\/proceedings2191236"},{"issue":"1","key":"27_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40537-019-0197-0","volume":"6","author":"C Shorten","year":"2019","unstructured":"Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1\u201348 (2019)","journal-title":"J. Big Data"},{"issue":"2","key":"27_CR28","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1109\/MPRV.2004.1316817","volume":"3","author":"A Sixsmith","year":"2004","unstructured":"Sixsmith, A., Johnson, N.: A smart sensor to detect the falls of the elderly. IEEE Perv. Comput. 3(2), 42\u201347 (2004)","journal-title":"IEEE Perv. Comput."},{"issue":"1","key":"27_CR29","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929\u20131958 (2014)","journal-title":"J. Mach. Learn. Res."},{"key":"27_CR30","doi-asserted-by":"crossref","unstructured":"Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. In: Computational Intelligence and Neuroscience 2018 (2018)","DOI":"10.1155\/2018\/7068349"},{"key":"27_CR31","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.patrec.2018.02.010","volume":"119","author":"J Wang","year":"2019","unstructured":"Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3\u201311 (2019)","journal-title":"Pattern Recogn. Lett."},{"key":"27_CR32","doi-asserted-by":"crossref","unstructured":"Xie, S., Girshick, R., Doll\u00e1r, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492\u20131500 (2017)","DOI":"10.1109\/CVPR.2017.634"},{"key":"27_CR33","doi-asserted-by":"crossref","unstructured":"Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)","DOI":"10.5244\/C.30.87"},{"key":"27_CR34","doi-asserted-by":"crossref","unstructured":"Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthcare Eng. 2017 (2017)","DOI":"10.1155\/2017\/3090343"}],"container-title":["Lecture Notes in Computer Science","Bioinformatics and Biomedical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-07704-3_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,19]],"date-time":"2022-06-19T23:08:17Z","timestamp":1655680097000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-07704-3_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031077036","9783031077043"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-07704-3_27","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"8 June 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWBBIO","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on Bioinformatics and Biomedical Engineering","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gran Canaria","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 June 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwbbio2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iwbbio.ugr.es\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"212","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"75","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"35% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,1","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}