{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T17:46:38Z","timestamp":1726163198245},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031064579"},{"type":"electronic","value":"9783031064586"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-06458-6_5","type":"book-chapter","created":{"date-parts":[[2022,5,12]],"date-time":"2022-05-12T11:07:58Z","timestamp":1652353678000},"page":"61-70","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Facial Expression Recognition Using a\u00a0Hybrid ViT-CNN Aggregator"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7350-0573","authenticated-orcid":false,"given":"Rachid","family":"Bousaid","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0327-8249","authenticated-orcid":false,"given":"Mohamed","family":"El Hajji","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4934-2322","authenticated-orcid":false,"given":"Youssef","family":"Es-Saady","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,13]]},"reference":[{"key":"5_CR1","doi-asserted-by":"publisher","unstructured":"Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17(2), 124\u2013129 (1971). https:\/\/doi.org\/10.1037\/h0030377","DOI":"10.1037\/h0030377"},{"key":"5_CR2","doi-asserted-by":"publisher","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132323 (1998). https:\/\/doi.org\/10.1109\/5.726791","DOI":"10.1109\/5.726791"},{"key":"5_CR3","doi-asserted-by":"publisher","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84\u201390 (2017). https:\/\/doi.org\/10.1145\/3065386","DOI":"10.1145\/3065386"},{"key":"5_CR4","unstructured":"Li, H., Sui, M., Zhao, F., Zha, Z., Wu, F.: MVT: Mask Vision Transformer for Facial Expression Recognition in the Wild (2021). arXiv:2106.04520"},{"key":"5_CR5","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (2021). arXiv:2103.14030","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"5_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2019.105724","volume":"84","author":"JC Hung","year":"2019","unstructured":"Hung, J.C., Lin, K.C., Lai, N.X.: Recognizing learning emotion based on convolutional neural networks and transfer learning. Appl. Soft Comput. J. 84, 105724 (2019). https:\/\/doi.org\/10.1016\/j.asoc.2019.105724","journal-title":"Appl. Soft Comput. J."},{"key":"5_CR7","unstructured":"Rzayeva, Z., Alasgarov, E.: Facial emotion recognition using deep convolutional neural networks. Int. J. Adv. Sci. Technol. 29(6 Special Issue), 2020\u20132025 (2020)"},{"key":"5_CR8","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1007\/978-3-319-69456-6_12","volume-title":"Multi-disciplinary Trends in Artificial Intelligence","author":"T Connie","year":"2017","unstructured":"Connie, T., Al-Shabi, M., Cheah, W.P., Goh, M.: Facial expression recognition using a hybrid CNN\u2013SIFT aggregator. In: Phon-Amnuaisuk, S., Ang, S.-P., Lee, S.-Y. (eds.) MIWAI 2017. LNCS (LNAI), vol. 10607, pp. 139\u2013149. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-69456-6_12"},{"key":"5_CR9","doi-asserted-by":"publisher","unstructured":"Alfakih, A., Yang, S., Hu, T.: Distributed computing and artificial intelligence. In: 16th International Conference, Multi-view Cooperative Deep Convolutional Network for Facial Recognition with Small Samples Learning, vol. 290 (2019). https:\/\/doi.org\/10.1007\/978-3-030-23887-2","DOI":"10.1007\/978-3-030-23887-2"},{"key":"5_CR10","unstructured":"Aouayeb, M., Hamidouche, W., Soladie, C., Kpalma, K., Seguier, R.: Learning Vision Transformer with Squeeze and Excitation for Facial Expression Recognition, pp. 1\u201313 (2021). arXiv:2107.03107"},{"key":"5_CR11","doi-asserted-by":"publisher","unstructured":"Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 94\u2013101 (2010). https:\/\/doi.org\/10.1109\/CVPRW.2010.5543262","DOI":"10.1109\/CVPRW.2010.5543262"},{"key":"5_CR12","doi-asserted-by":"publisher","unstructured":"Riaz, M.N., Shen, Y., Sohail, M., Guo, M.: eXnet: an efficient approach for emotion recognition in the wild. Sensors (Switzerland) 20(4), 1087 (2020). https:\/\/doi.org\/10.3390\/s20041087","DOI":"10.3390\/s20041087"},{"issue":"2","key":"5_CR13","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1007\/s00371-019-01630-9","volume":"36","author":"A Agrawal","year":"2019","unstructured":"Agrawal, A., Mittal, N.: Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy. Visual Comput. 36(2), 405\u2013412 (2019). https:\/\/doi.org\/10.1007\/s00371-019-01630-9","journal-title":"Visual Comput."},{"key":"5_CR14","doi-asserted-by":"publisher","unstructured":"Wang, Y., Li, Y., Song, Y., Rong, X.: The influence of the activation function in a convolution neural network model of facial expression recognition. Appl. Sci. 10(5), 1897 (2020). https:\/\/doi.org\/10.3390\/app10051897","DOI":"10.3390\/app10051897"},{"key":"5_CR15","doi-asserted-by":"publisher","unstructured":"Huang, Q., Huang, C., Wang, X., Jiang, F.: Facial expression recognition with grid-wise attention and visual transformer. Inf. Sci. (Ny). 580, 35\u201354 (2021). https:\/\/doi.org\/10.1016\/j.ins.2021.08.043","DOI":"10.1016\/j.ins.2021.08.043"}],"container-title":["Lecture Notes in Business Information Processing","Business Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-06458-6_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T07:28:02Z","timestamp":1710314882000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-06458-6_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031064579","9783031064586"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-06458-6_5","relation":{},"ISSN":["1865-1348","1865-1356"],"issn-type":[{"type":"print","value":"1865-1348"},{"type":"electronic","value":"1865-1356"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"13 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CBI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Business Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Khouribga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 May 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 May 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cbi2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.cbi-bm.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"68","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"23","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"34% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}