{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T17:46:44Z","timestamp":1726163204071},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031064579"},{"type":"electronic","value":"9783031064586"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-06458-6_22","type":"book-chapter","created":{"date-parts":[[2022,5,12]],"date-time":"2022-05-12T11:07:58Z","timestamp":1652353678000},"page":"263-278","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Dimensionality Reduction of\u00a0MI-EEG Data via\u00a0Convolutional Autoencoders with\u00a0a\u00a0Low Size Dataset"],"prefix":"10.1007","author":[{"given":"Mouad","family":"Riyad","sequence":"first","affiliation":[]},{"given":"Mohammed","family":"Khalil","sequence":"additional","affiliation":[]},{"given":"Abdellah","family":"Adib","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,13]]},"reference":[{"key":"22_CR1","doi-asserted-by":"publisher","first-page":"542","DOI":"10.1016\/j.future.2019.06.027","volume":"101","author":"SU Amin","year":"2019","unstructured":"Amin, S.U., Alsulaiman, M., Muhammad, G., Mekhtiche, M.A., Shamim Hossain, M.: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Fut. Gene. Comput. Syst. 101, 542\u2013554 (2019). https:\/\/doi.org\/10.1016\/j.future.2019.06.027","journal-title":"Fut. Gene. Comput. Syst."},{"key":"22_CR2","doi-asserted-by":"publisher","unstructured":"Ben Said, A., Mohamed, A., Elfouly, T.: Deep learning approach for EEG compression in mHealth system. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1508\u20131512. IEEE, Valencia, Spain, June 2017. https:\/\/doi.org\/10.1109\/IWCMC.2017.7986507","DOI":"10.1109\/IWCMC.2017.7986507"},{"key":"22_CR3","doi-asserted-by":"publisher","first-page":"94757","DOI":"10.1109\/ACCESS.2020.2995442","volume":"8","author":"Y Cao","year":"2020","unstructured":"Cao, Y., Zhang, H., Choi, Y.B., Wang, H., Xiao, S.: Hybrid deep learning model assisted data compression and classification for efficient data delivery in mobile health applications. IEEE Access 8, 94757\u201394766 (2020). https:\/\/doi.org\/10.1109\/ACCESS.2020.2995442","journal-title":"IEEE Access"},{"key":"22_CR4","doi-asserted-by":"crossref","unstructured":"Clerc, M., Bougrain, L., Lotte, F. (eds.): Brain-Computer Interfaces 1: Foundations and Methods. Cognitive Science Series, ISTE; Wiley, London (2016)","DOI":"10.1002\/9781119144977"},{"key":"22_CR5","unstructured":"Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2\u20134 May 2016, Conference Track Proceedings (2016)"},{"key":"22_CR6","doi-asserted-by":"publisher","unstructured":"Dao, P.T., Li, X.J., Do, H.N.: Lossy compression techniques for EEG signals. In: 2015 International Conference on Advanced Technologies for Communications (ATC), pp. 154\u2013159 (2015). https:\/\/doi.org\/10.1109\/ATC.2015.7388309","DOI":"10.1109\/ATC.2015.7388309"},{"key":"22_CR7","doi-asserted-by":"publisher","first-page":"68415","DOI":"10.1109\/ACCESS.2019.2919143","volume":"7","author":"A Ditthapron","year":"2019","unstructured":"Ditthapron, A., Banluesombatkul, N., Ketrat, S., Chuangsuwanich, E., Wilaiprasitporn, T.: Universal joint feature extraction for P300 EEG classification using multi-task autoencoder. IEEE Access 7, 68415\u201368428 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2019.2919143","journal-title":"IEEE Access"},{"issue":"6","key":"22_CR8","doi-asserted-by":"publisher","first-page":"510","DOI":"10.1016\/0013-4694(88)90149-6","volume":"70","author":"L Farwell","year":"1988","unstructured":"Farwell, L., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510\u2013523 (1988). https:\/\/doi.org\/10.1016\/0013-4694(88)90149-6","journal-title":"Electroencephalogr. Clin. Neurophysiol."},{"issue":"9","key":"22_CR9","doi-asserted-by":"publisher","first-page":"2196","DOI":"10.1109\/TBME.2016.2631620","volume":"64","author":"A Gogna","year":"2017","unstructured":"Gogna, A., Majumdar, A., Ward, R.: Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals. IEEE Trans. Biomed. Eng. 64(9), 2196\u20132205 (2017). https:\/\/doi.org\/10.1109\/TBME.2016.2631620","journal-title":"IEEE Trans. Biomed. Eng."},{"volume-title":"Deep Learning Adaptive Computation and Machine Learning","year":"2016","author":"I Goodfellow","key":"22_CR10","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2016)"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Hosseini, M.P., Soltanian-Zadeh, H., Elisevich, K., Pompili, D.: Cloud-based deep learning of Big EEG data for epileptic seizure prediction. arXiv:1702.05192 [cs, stat], February 2017","DOI":"10.1109\/GlobalSIP.2016.7906022"},{"key":"22_CR12","doi-asserted-by":"publisher","unstructured":"Kaya, M., Binli, M.K., Ozbay, E., Yanar, H., Mishchenko, Y.: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci. Data 5, 180211 (2018). https:\/\/doi.org\/10.1038\/sdata.2018.211","DOI":"10.1038\/sdata.2018.211"},{"key":"22_CR13","doi-asserted-by":"publisher","unstructured":"Lawhern, V.J., et al.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018). https:\/\/doi.org\/10.1088\/1741-2552\/aace8c","DOI":"10.1088\/1741-2552\/aace8c"},{"key":"22_CR14","unstructured":"Le, L., Patterson, A., White, M.: Supervised autoencoders: improving generalization performance with unsupervised regularizers. In: 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada, p. 11 (2018)"},{"key":"22_CR15","unstructured":"Le, L., Patterson, A., White, M.: Supervised autoencoders: improving generalization performance with unsupervised regularizers. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018)"},{"issue":"7553","key":"22_CR16","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015). https:\/\/doi.org\/10.1038\/nature14539","journal-title":"Nature"},{"key":"22_CR17","doi-asserted-by":"publisher","unstructured":"Liao, L.D., et al.: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. NeuroEng. Rehabi. 9(1), 5 (2012). https:\/\/doi.org\/10.1186\/1743-0003-9-5","DOI":"10.1186\/1743-0003-9-5"},{"key":"22_CR18","unstructured":"Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML,vol. 30, p. 3. Citeseer (2013)"},{"key":"22_CR19","doi-asserted-by":"publisher","first-page":"156","DOI":"10.1016\/j.procs.2018.07.219","volume":"126","author":"B Nguyen","year":"2018","unstructured":"Nguyen, B., Ma, W., Tran, D.: A study of combined lossy compression and seizure detection on epileptic EEG signals. Procedia Comput. Sci. 126, 156\u2013165 (2018). https:\/\/doi.org\/10.1016\/j.procs.2018.07.219","journal-title":"Procedia Comput. Sci."},{"key":"22_CR20","unstructured":"Nguyen, B.T.: EEG Lossy compression and its impact on EEG-based Pattern Recognition. Ph.D. thesis, University of Canberra"},{"key":"22_CR21","doi-asserted-by":"publisher","unstructured":"Pandey, S.K., Janghel, R.R.: Recent deep learning techniques, challenges and its applications for medical healthcare system: a review. Neural Process. Lett. 50(2), 1907\u20131935 (2019). https:\/\/doi.org\/10.1007\/s11063-018-09976-2","DOI":"10.1007\/s11063-018-09976-2"},{"key":"22_CR22","doi-asserted-by":"publisher","unstructured":"Pfurtscheller, G., Brunner, C., Schl\u00f6gl, A., da Silva], F.L.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153\u2013159 (2006). https:\/\/doi.org\/10.1016\/j.neuroimage.2005.12.003","DOI":"10.1016\/j.neuroimage.2005.12.003"},{"key":"22_CR23","doi-asserted-by":"publisher","unstructured":"Riyad, M., Khalil, M., Adib, A.: A novel multi-scale convolutional neural network for motor imagery classification. Biomed. Signal Process. Control 68, 102747 (2021). https:\/\/doi.org\/10.1016\/j.bspc.2021.102747","DOI":"10.1016\/j.bspc.2021.102747"},{"key":"22_CR24","doi-asserted-by":"publisher","unstructured":"Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization: convolutional neural networks in EEG analysis. Hum. Brain Mapp. 38(11), 5391\u20135420 (2017). https:\/\/doi.org\/10.1002\/hbm.23730","DOI":"10.1002\/hbm.23730"},{"key":"22_CR25","doi-asserted-by":"publisher","unstructured":"Sudhakar, M.S., Titus, G.: Computational mechanisms for exploiting temporal redundancies supporting multichannel EEG compression. In: Paul, S. (ed.) Application of Biomedical Engineering in Neuroscience, pp. 245\u2013268. Springer, Singapore (2019). https:\/\/doi.org\/10.1007\/978-981-13-7142-4_12","DOI":"10.1007\/978-981-13-7142-4_12"},{"key":"22_CR26","unstructured":"Teplan, M., et al.: Fundamentals of EEG measurement. Measure. Sci. Rev. 2(2), 1\u201311 (2002)"},{"key":"22_CR27","doi-asserted-by":"publisher","unstructured":"Titus, G., Sudhakar, M.S.: A simple and efficient algorithm operating with linear time for MCEEG data compression. Austral. Phys. Eng. Sci. Med. 40(3), 759\u2013768 (2017). https:\/\/doi.org\/10.1007\/s13246-017-0575-x","DOI":"10.1007\/s13246-017-0575-x"},{"key":"22_CR28","unstructured":"Wu, D., Shi, Y., Wang, Z., Yang, J., Sawan, M.: C$$^{2}$$SP-Net: joint compression and classification network for epilepsy seizure prediction. arXiv:2110.13674 [cs], October 2021"}],"container-title":["Lecture Notes in Business Information Processing","Business Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-06458-6_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T07:31:16Z","timestamp":1710315076000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-06458-6_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031064579","9783031064586"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-06458-6_22","relation":{},"ISSN":["1865-1348","1865-1356"],"issn-type":[{"type":"print","value":"1865-1348"},{"type":"electronic","value":"1865-1356"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"13 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CBI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Business Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Khouribga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 May 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 May 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cbi2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.cbi-bm.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"68","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"23","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"34% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}