{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T12:40:41Z","timestamp":1742992841968,"version":"3.40.3"},"publisher-location":"Cham","reference-count":33,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031064296"},{"type":"electronic","value":"9783031064302"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-06430-2_59","type":"book-chapter","created":{"date-parts":[[2022,5,16]],"date-time":"2022-05-16T08:03:16Z","timestamp":1652688196000},"page":"706-717","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Synthetic Data of\u00a0Randomly Piled, Similar Objects for\u00a0Deep Learning-Based Object Detection"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-5203-3347","authenticated-orcid":false,"given":"Janis","family":"Arents","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4842-246X","authenticated-orcid":false,"given":"Bernd","family":"Lesser","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1298-7071","authenticated-orcid":false,"given":"Andis","family":"Bizuns","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6845-4381","authenticated-orcid":false,"given":"Roberts","family":"Kadikis","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4951-7903","authenticated-orcid":false,"given":"Elvijs","family":"Buls","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5405-0738","authenticated-orcid":false,"given":"Modris","family":"Greitans","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,17]]},"reference":[{"key":"59_CR1","unstructured":"AlexeyAB: darknet. https:\/\/github.com\/AlexeyAB\/darknet. Accessed 20 Dec 2021"},{"key":"59_CR2","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1007\/978-3-319-94120-2_35","volume-title":"International Joint Conference SOCO\u201918-CISIS\u201918-ICEUTE\u201918","author":"M Alonso","year":"2019","unstructured":"Alonso, M., Izaguirre, A., Gra\u00f1a, M.: Current research trends in robot grasping and bin picking. In: Gra\u00f1a, M., L\u00f3pez-Guede, J.M., Etxaniz, O., Herrero, \u00c1., S\u00e1ez, J.A., Quinti\u00e1n, H., Corchado, E. (eds.) SOCO\u201918-CISIS\u201918-ICEUTE\u201918 2018. AISC, vol. 771, pp. 367\u2013376. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-319-94120-2_35"},{"issue":"5","key":"59_CR3","doi-asserted-by":"publisher","first-page":"392","DOI":"10.3103\/S0146411618050024","volume":"52","author":"J Arents","year":"2018","unstructured":"Arents, J., Cacurs, R., Greitans, M.: Integration of computervision and artificial intelligence subsystems with robot operating system based motion planning for industrial robots. Autom. Control Comput. Sci. 52(5), 392\u2013401 (2018)","journal-title":"Autom. Control Comput. Sci."},{"key":"59_CR4","doi-asserted-by":"publisher","unstructured":"Arents, J., Greitans, M.: Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl. Sci. 12(2), 937 (2022). https:\/\/doi.org\/10.3390\/app12020937","DOI":"10.3390\/app12020937"},{"key":"59_CR5","doi-asserted-by":"crossref","unstructured":"Arents, J., Greitans, M., Lesser, B.: Artificial Intelligence for Digitising Industry, Applications, chap. Construction of a Smart Vision-Guided Robot System for Manipulation in a Dynamic Environment, pp. 205\u2013220. https:\/\/www.riverpublishers.com\/book_details.php?book_id=967, https:\/\/doi.org\/10.13052\/rp-9788770226639 (2021)","DOI":"10.1201\/9781003337232-18"},{"key":"59_CR6","unstructured":"Buchholz, D.: Bin-Picking - New Approaches for a Classical Problem. Ph.D. thesis, $$\\tilde{(}{\\rm Jul}\\,2015)$$, https:\/\/publikationsserver.tu-braunschweig.de\/receive\/dbbs_mods_00060699"},{"key":"59_CR7","doi-asserted-by":"publisher","unstructured":"Buls, E., Kadikis, R., Cacurs, R., $$\\bar{{\\rm A}}$$rents, J.: Generation of synthetic training data for object detection in piles. In: Eleventh International Conference on Machine Vision (ICMV 2018). vol. 11041, pp. 533\u2013540. International Society for Optics and Photonics, SPIE (2019). https:\/\/doi.org\/10.1117\/12.2523203, https:\/\/doi.org\/10.1117\/12.2523203","DOI":"10.1117\/12.2523203"},{"issue":"4","key":"59_CR8","doi-asserted-by":"publisher","first-page":"3355","DOI":"10.1109\/LRA.2018.2852777","volume":"3","author":"FJ Chu","year":"2018","unstructured":"Chu, F.J., Xu, R., Vela, P.A.: Real-world multiobject, multigrasp detection. IEEE Robot. Autom. Lett. 3(4), 3355\u20133362 (2018)","journal-title":"IEEE Robot. Autom. Lett."},{"key":"59_CR9","doi-asserted-by":"crossref","unstructured":"Das, A., Kandan, S., Yogamani, S., Krizek, P.: Design of real-time semantic segmentation decoder for automated driving (2019)","DOI":"10.5220\/0007366003930400"},{"issue":"4","key":"59_CR10","doi-asserted-by":"publisher","first-page":"743","DOI":"10.1109\/TPAMI.2011.155","volume":"34","author":"P Dollar","year":"2011","unstructured":"Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743\u2013761 (2011)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"59_CR11","doi-asserted-by":"publisher","unstructured":"Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: Surprisingly easy synthesis for instance detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1310\u20131319 (2017). https:\/\/doi.org\/10.1109\/ICCV.2017.146","DOI":"10.1109\/ICCV.2017.146"},{"key":"59_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1007\/978-3-319-10584-0_23","volume-title":"Computer Vision \u2013 ECCV 2014","author":"S Gupta","year":"2014","unstructured":"Gupta, S., Girshick, R., Arbel\u00e1ez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345\u2013360. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10584-0_23"},{"key":"59_CR13","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"59_CR14","doi-asserted-by":"crossref","unstructured":"He, R., Rojas, J., Guan, Y.: A 3D object detection and pose estimation pipeline using RGB-D images. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1527\u20131532. IEEE (2017)","DOI":"10.1109\/ROBIO.2017.8324634"},{"key":"59_CR15","doi-asserted-by":"crossref","unstructured":"Kleeberger, K., Landgraf, C., Huber, M.F.: Large-scale 6D object pose estimation dataset for industrial bin-picking (2019)","DOI":"10.1109\/IROS40897.2019.8967594"},{"key":"59_CR16","unstructured":"Luenendonk, M.: Industry 4.0: definition, design principles, challenges, and the future of employment (2019). Accessed 24 2020"},{"key":"59_CR17","doi-asserted-by":"crossref","unstructured":"Mousavian, A., Eppner, C., Fox, D.: 6-dof graspnet: variational grasp generation for object manipulation (2019)","DOI":"10.1109\/ICCV.2019.00299"},{"key":"59_CR18","doi-asserted-by":"publisher","unstructured":"Padilla, R., Netto, S.L., da Silva, E.A.B.: A survey on performance metrics for object-detection algorithms. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237\u2013242 (2020). https:\/\/doi.org\/10.1109\/IWSSIP48289.2020.9145130","DOI":"10.1109\/IWSSIP48289.2020.9145130"},{"issue":"3","key":"59_CR19","doi-asserted-by":"publisher","first-page":"335","DOI":"10.3390\/s16030335","volume":"16","author":"L P\u00e9rez","year":"2016","unstructured":"P\u00e9rez, L., Rodr\u00edguez, \u00cd., Rodr\u00edguez, N., Usamentiaga, R., Garc\u00eda, D.F.: Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16(3), 335 (2016)","journal-title":"Sensors"},{"key":"59_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"909","DOI":"10.1007\/978-3-319-49409-8_75","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"W Qiu","year":"2016","unstructured":"Qiu, W., Yuille, A.: UnrealCV: connecting computer vision to unreal engine. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 909\u2013916. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-49409-8_75"},{"key":"59_CR21","unstructured":"Redmon, J.: Darknet: open source neural networks in c. http:\/\/pjreddie.com\/darknet\/ (2013\u20132016)"},{"key":"59_CR22","doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263\u20137271 (2017)","DOI":"10.1109\/CVPR.2017.690"},{"key":"59_CR23","unstructured":"Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)"},{"key":"59_CR24","doi-asserted-by":"publisher","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (06 2015). https:\/\/doi.org\/10.1109\/TPAMI.2016.2577031","DOI":"10.1109\/TPAMI.2016.2577031"},{"key":"59_CR25","doi-asserted-by":"crossref","unstructured":"Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781\u201310790 (2020)","DOI":"10.1109\/CVPR42600.2020.01079"},{"key":"59_CR26","unstructured":"Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. In: CoRL (2018)"},{"key":"59_CR27","unstructured":"Wang, K., Shi, F., Wang, W., Nan, Y., Lian, S.: Synthetic data generation and adaption for object detection in smart vending machines. CoRR abs\/1904.12294 http:\/\/arxiv.org\/abs\/1904.12294 (2019)"},{"key":"59_CR28","doi-asserted-by":"crossref","unstructured":"Xu, Z., Li, B., Yuan, Y., Dang, A.: Beta R-CNN: Looking into pedestrian detection from another perspective. In: NeurIPS (2020)","DOI":"10.1155\/2020\/5761414"},{"key":"59_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1007\/978-3-030-58539-6_11","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Y Yuan","year":"2020","unstructured":"Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173\u2013190. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58539-6_11"},{"key":"59_CR30","unstructured":"YunYang1994: tensorflow-yolov3. https:\/\/github.com\/YunYang1994\/tensorflow-yolov3 Accessed Dec 20 2021"},{"key":"59_CR31","doi-asserted-by":"crossref","unstructured":"Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. In: Digital Signal Processing, p. 103514 (2022)","DOI":"10.1016\/j.dsp.2022.103514"},{"key":"59_CR32","doi-asserted-by":"crossref","unstructured":"Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., Hu, S.: Traffic-sign detection and classification in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2110\u20132118 (2016)","DOI":"10.1109\/CVPR.2016.232"},{"key":"59_CR33","doi-asserted-by":"publisher","unstructured":"Zoghlami, F., Kurrek, P., Jocas, M., Masala, G., Salehi, V.: Design of a deep post gripping perception framework for industrial robots. J. Comput. Inf. Sci. Eng. 21, 1\u201314 (2020). https:\/\/doi.org\/10.1115\/1.4048204","DOI":"10.1115\/1.4048204"}],"container-title":["Lecture Notes in Computer Science","Image Analysis and Processing \u2013 ICIAP 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-06430-2_59","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T13:58:15Z","timestamp":1710338295000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-06430-2_59"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031064296","9783031064302"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-06430-2_59","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"17 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIAP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image Analysis and Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lecce","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 May 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 May 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iciap2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iciap2021.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"307","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"168","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}