{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T17:41:19Z","timestamp":1726162879526},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031056420"},{"type":"electronic","value":"9783031056437"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-05643-7_29","type":"book-chapter","created":{"date-parts":[[2022,5,14]],"date-time":"2022-05-14T08:03:05Z","timestamp":1652515385000},"page":"448-459","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Attention-Based CNN Capturing EEG Recording\u2019s Average Voltage and\u00a0Local Change"],"prefix":"10.1007","author":[{"given":"Long","family":"Yi","sequence":"first","affiliation":[]},{"given":"Xiaodong","family":"Qu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,15]]},"reference":[{"key":"29_CR1","unstructured":"Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). http:\/\/arxiv.org\/abs\/1409.0473, cite arxiv:1409.0473Comment. Accepted at ICLR 2015 as oral presentation"},{"key":"29_CR2","doi-asserted-by":"crossref","unstructured":"Bang, J.S., Lee, S.W.: Interpretable convolutional neural networks for subject-independent motor imagery classification (2021)","DOI":"10.1109\/BCI53720.2022.9734822"},{"key":"29_CR3","doi-asserted-by":"publisher","unstructured":"Blankertz, B., et al.: The BCI competition. III: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153\u2013159 (2006). https:\/\/doi.org\/10.1109\/TNSRE.2006.875642","DOI":"10.1109\/TNSRE.2006.875642"},{"key":"29_CR4","doi-asserted-by":"crossref","unstructured":"Chaudhari, S., Mithal, V., Polatkan, G., Ramanath, R.: An attentive survey of attention models (2021)","DOI":"10.1145\/3465055"},{"key":"29_CR5","unstructured":"Chen, K., Wang, J., Chen, L.C., Gao, H., Xu, W., Nevatia, R.: ABC-CNN: an attention based convolutional neural network for visual question answering, November 2015"},{"key":"29_CR6","doi-asserted-by":"crossref","unstructured":"Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading (2016)","DOI":"10.18653\/v1\/D16-1053"},{"key":"29_CR7","doi-asserted-by":"crossref","unstructured":"Cisotto, G., Zanga, A., Chlebus, J., Zoppis, I., Manzoni, S., Markowska-Kaczmar, U.: Comparison of attention-based deep learning models for EEG classification (2020)","DOI":"10.21203\/rs.3.rs-279263\/v1"},{"key":"29_CR8","unstructured":"Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention and convolutional layers (2020)"},{"key":"29_CR9","doi-asserted-by":"crossref","unstructured":"Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)","DOI":"10.1088\/1741-2552\/ab0ab5"},{"key":"29_CR10","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2021)"},{"key":"29_CR11","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)"},{"key":"29_CR12","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)","DOI":"10.1109\/CVPR.2016.90"},{"key":"29_CR13","doi-asserted-by":"crossref","unstructured":"Lee, Y.E., Lee, S.H.: EEG-transformer: self-attention from transformer architecture for decoding EEG of imagined speech (2021)","DOI":"10.1109\/BCI53720.2022.9735124"},{"key":"29_CR14","doi-asserted-by":"publisher","unstructured":"Liu, X., Shen, Y., Liu, J., Yang, J., Xiong, P., Lin, F.: Parallel spatial-temporal self-attention CNN-based motor imagery classification for BCI. Front. Neurosci. 14 (2020). https:\/\/doi.org\/10.3389\/fnins.2020.587520. https:\/\/www.frontiersin.org\/article\/10.3389\/fnins.2020.587520","DOI":"10.3389\/fnins.2020.587520"},{"key":"29_CR15","doi-asserted-by":"crossref","unstructured":"Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)","DOI":"10.1088\/1741-2552\/aab2f2"},{"key":"29_CR16","unstructured":"Lotte, F., L\u00e9cuyer, A., Guan, C.: Towards a Fully Interpretable EEG-based BCI System, July 2010. https:\/\/hal.inria.fr\/inria-00504658. Working paper or preprint"},{"key":"29_CR17","doi-asserted-by":"crossref","unstructured":"Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation (2015)","DOI":"10.18653\/v1\/D15-1166"},{"key":"29_CR18","doi-asserted-by":"crossref","unstructured":"Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics, pp. 501\u2013507 (2018)","DOI":"10.5220\/0006814705010507"},{"key":"29_CR19","doi-asserted-by":"publisher","unstructured":"Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24\u201333. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-60735-7_3","DOI":"10.1007\/978-3-030-60735-7_3"},{"key":"29_CR20","doi-asserted-by":"publisher","unstructured":"Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66\u201374. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-60735-7_7","DOI":"10.1007\/978-3-030-60735-7_7"},{"key":"29_CR21","doi-asserted-by":"publisher","unstructured":"Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning, pp. 1\u20139 (2018). https:\/\/doi.org\/10.1109\/FIE.2018.8659031","DOI":"10.1109\/FIE.2018.8659031"},{"issue":"10","key":"29_CR22","doi-asserted-by":"publisher","first-page":"1692","DOI":"10.1016\/j.neuron.2021.03.015","volume":"109","author":"HM Schreyer","year":"2021","unstructured":"Schreyer, H.M., Gollisch, T.: Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli. Neuron 109(10), 1692\u20131706 (2021). https:\/\/doi.org\/10.1016\/j.neuron.2021.03.015","journal-title":"Neuron"},{"key":"29_CR23","doi-asserted-by":"publisher","unstructured":"Smith, S.J.M.: EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76(suppl 2), ii2\u2013ii7 (2005). https:\/\/doi.org\/10.1136\/jnnp.2005.069245. https:\/\/jnnp.bmj.com\/content\/76\/suppl_2\/ii2","DOI":"10.1136\/jnnp.2005.069245"},{"key":"29_CR24","doi-asserted-by":"crossref","unstructured":"Sturm, I., Bach, S., Samek, W., M\u00fcller, K.R.: Interpretable deep neural networks for single-trial EEG classification (2016)","DOI":"10.1016\/j.jneumeth.2016.10.008"},{"key":"29_CR25","doi-asserted-by":"crossref","unstructured":"Sun, J., Xie, J., Zhou, H.: EEG classification with transformer-based models. In: 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (2021)","DOI":"10.1109\/LifeTech52111.2021.9391844"},{"key":"29_CR26","unstructured":"Vaswani, A., et al.: Attention is all you need 30 (2017). https:\/\/proceedings.neurips.cc\/paper\/2017\/file\/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf"},{"key":"29_CR27","doi-asserted-by":"publisher","unstructured":"Wairagkar, M., Hayashi, Y., Nasuto, S.J.: Dynamics of long-range temporal correlations in broadband EEG during different motor execution and imagery tasks. Front. Neurosci. 15 (2021). https:\/\/doi.org\/10.3389\/fnins.2021.660032. https:\/\/www.frontiersin.org\/article\/10.3389\/fnins.2021.660032","DOI":"10.3389\/fnins.2021.660032"},{"key":"29_CR28","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1038\/s41586-021-03506-2","volume":"593","author":"FR Willett","year":"2021","unstructured":"Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., Shenoy, K.V.: High-performance brain-to-text communication via imagined handwriting. Nature 593, 249\u2013254 (2021)","journal-title":"Nature"},{"key":"29_CR29","doi-asserted-by":"publisher","unstructured":"Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3\u201319. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_1","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"29_CR30","unstructured":"Yin, W., Sch\u00fctze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional neural network for modeling sentence pairs (2018)"},{"key":"29_CR31","doi-asserted-by":"crossref","unstructured":"Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., Zhang, Y.: A survey on deep learning-based non- invasive brain signals: recent advances and new frontiers. J. Neural Eng. 18, 031002 (2021)","DOI":"10.1088\/1741-2552\/abc902"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence in HCI"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-05643-7_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T19:11:29Z","timestamp":1710357089000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-05643-7_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031056420","9783031056437"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-05643-7_29","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"15 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HCII","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Human-Computer Interaction","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 June 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 July 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hcii2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2022.hci.international\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}