{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T17:38:43Z","timestamp":1726162723394},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031048289"},{"type":"electronic","value":"9783031048296"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-04829-6_28","type":"book-chapter","created":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T00:05:42Z","timestamp":1652141142000},"page":"316-326","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["On Creation of\u00a0Synthetic Samples from\u00a0GANs for\u00a0Fake News Identification Algorithms"],"prefix":"10.1007","author":[{"given":"Bruno","family":"Vaz","sequence":"first","affiliation":[]},{"given":"V\u00edtor","family":"Bernardes","sequence":"additional","affiliation":[]},{"given":"\u00c1lvaro","family":"Figueira","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,11]]},"reference":[{"key":"28_CR1","unstructured":"Mueller\u00a0III, R.S.: Report on the investigation into Russian interference in the 2016 presidential election, vol. i & ii. (Redacted version of 4\/18\/2019) (2019)"},{"key":"28_CR2","doi-asserted-by":"publisher","first-page":"100","DOI":"10.1016\/j.pdisas.2020.100119","volume":"8","author":"Z Barua","year":"2020","unstructured":"Barua, Z., Barua, S., Aktar, S., Kabir, N., Li, M.: Effects of misinformation on covid-19 individual responses and recommendations for resilience of disastrous consequences of misinformation. Prog. Disaster Sci. 8, 100\u2013119 (2020)","journal-title":"Prog. Disaster Sci."},{"key":"28_CR3","unstructured":"Domm, P.: Markets sink briefly on fake AP terror tweet. CNBC (2013). https:\/\/www.cnbc.com\/id\/100646197"},{"key":"28_CR4","unstructured":"Zhou, X., Zafarani, R.: Fake news: a survey of research, detection methods, and opportunities. preprint arXiv:1812.00315 (2018)"},{"key":"28_CR5","doi-asserted-by":"crossref","unstructured":"Rubin, V.L., Conroy, N., Chen, Y., Cornwell, S.: Fake news or truth? Using satirical cues to detect potentially misleading news. In: Proceedings of 2nd Workshop on Computational Approaches to Deception Detection, pp. 7\u201317 (2016)","DOI":"10.18653\/v1\/W16-0802"},{"key":"28_CR6","unstructured":"P\u00e9rez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of fake news. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3391\u20133401 (2018)"},{"issue":"2","key":"28_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3377478","volume":"1","author":"X Zhou","year":"2020","unstructured":"Zhou, X., Jain, A., Phoha, V.V., Zafarani, R.: Fake news early detection: a theory-driven model. Digit. Threat.: Res. Pract. 1(2), 1\u201325 (2020)","journal-title":"Digit. Threat.: Res. Pract."},{"issue":"2","key":"28_CR8","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1109\/MIS.2019.2899143","volume":"34","author":"JC Reis","year":"2019","unstructured":"Reis, J.C., Correia, A., Murai, F., Veloso, A., Benevenuto, F.: Supervised learning for fake news detection. IEEE Intell. Syst. 34(2), 76\u201381 (2019)","journal-title":"IEEE Intell. Syst."},{"key":"28_CR9","doi-asserted-by":"crossref","unstructured":"Wang, W.Y.: \u201cLiar, liar pants on fire\u201d: a new benchmark dataset for fake news detection. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 422\u2013426 (2017)","DOI":"10.18653\/v1\/P17-2067"},{"key":"28_CR10","doi-asserted-by":"crossref","unstructured":"Volkova, S., Shaffer, K., Jang, J.Y., Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on Twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 647\u2013653 (2017)","DOI":"10.18653\/v1\/P17-2102"},{"key":"28_CR11","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)"},{"key":"28_CR12","doi-asserted-by":"crossref","unstructured":"Bernardes, V., Figueira, \u00c1.: A mixed model for identifying fake news in tweets from the 2020 U.S. presidential election. In: Proceedings of the 17th International Conference on Web Information Systems and Technologies, pp. 307\u2013315 (2021)","DOI":"10.5220\/0010660500003058"},{"key":"28_CR13","doi-asserted-by":"crossref","unstructured":"Fahimi, F., Zhang, Z., Goh, W.B., Ang, K.K., Guan, C.: Towards EEG generation using GANs for BCI applications. In: 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 1\u20134. IEEE (2019)","DOI":"10.1109\/BHI.2019.8834503"},{"key":"28_CR14","doi-asserted-by":"crossref","unstructured":"Patel, M., Wang, X., Mao, S.: Data augmentation with conditional GAN for automatic modulation classification. In: Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning, pp. 31\u201336 (2020)","DOI":"10.1145\/3395352.3402622"},{"key":"28_CR15","doi-asserted-by":"publisher","first-page":"212","DOI":"10.1016\/j.neucom.2019.06.043","volume":"361","author":"A Ali-Gombe","year":"2019","unstructured":"Ali-Gombe, A., Elyan, E.: MFC-GAN: class-imbalanced dataset classification using multiple fake class generative adversarial network. Neurocomputing 361, 212\u2013221 (2019)","journal-title":"Neurocomputing"},{"key":"28_CR16","unstructured":"Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional GAN. preprint arXiv:1907.00503 (2019)"},{"key":"28_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"218","DOI":"10.1007\/978-3-030-01216-8_14","volume-title":"Computer Vision \u2013 ECCV 2018","author":"K Shmelkov","year":"2018","unstructured":"Shmelkov, K., Schmid, C., Alahari, K.: How good is my GAN? In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part II. LNCS, vol. 11206, pp. 218\u2013234. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01216-8_14"}],"container-title":["Lecture Notes in Networks and Systems","Information Systems and Technologies"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-04829-6_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T00:21:32Z","timestamp":1652142092000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-04829-6_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031048289","9783031048296"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-04829-6_28","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"11 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"WorldCIST","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"World Conference on Information Systems and Technologies","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Budva","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Montenegro","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 April 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 April 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"worldcist2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/worldcist.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}