{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T11:09:20Z","timestamp":1743073760604,"version":"3.40.3"},"publisher-location":"Cham","reference-count":49,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031024610"},{"type":"electronic","value":"9783031024627"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-02462-7_34","type":"book-chapter","created":{"date-parts":[[2022,4,14]],"date-time":"2022-04-14T23:02:49Z","timestamp":1649977369000},"page":"531-546","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Negative Selection Algorithm for Alzheimer\u2019s Diagnosis: Design and Performance Evaluation"],"prefix":"10.1007","author":[{"given":"Giuseppe","family":"De Gregorio","sequence":"first","affiliation":[]},{"given":"Antonio","family":"Della Cioppa","sequence":"additional","affiliation":[]},{"given":"Angelo","family":"Marcelli","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,4,15]]},"reference":[{"key":"34_CR1","doi-asserted-by":"publisher","unstructured":"A V, A.S., Lones, M.A., Smith, S.L., Vallejo, M.: Evaluation of recurrent neural network models for parkinson\u2019s disease classification using drawing data. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 1702\u20131706 (2021). https:\/\/doi.org\/10.1109\/EMBC46164.2021.9630106","DOI":"10.1109\/EMBC46164.2021.9630106"},{"key":"34_CR2","doi-asserted-by":"crossref","unstructured":"Agarwal, D., Marques, G., de la Torre-D\u00edez, I., Franco Martin, M.A., Garc\u00eda Zapira\u00edn, B., Mart\u00edn Rodr\u00edguez, F.: Transfer learning for alzheimer\u2019s disease through neuroimaging biomarkers: a systematic review. Sensors 21(21) (2021)","DOI":"10.3390\/s21217259"},{"key":"34_CR3","doi-asserted-by":"publisher","unstructured":"Alissa, M., et al.: Parkinson\u2019s disease diagnosis using convolutional neural networks and figure-copying tasks. Neural Comput. Appl. 34(2), 1433\u20131453 (2022). https:\/\/doi.org\/10.1007\/s00521-021-06469-7","DOI":"10.1007\/s00521-021-06469-7"},{"key":"34_CR4","doi-asserted-by":"crossref","unstructured":"Ba-Karait, N.O., Shamsuddin, S.M., Sudirman, R.: Eeg signals classification using a hybrid method based on negative selection and particle swarm optimization. In: Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 427\u2013438 (2012)","DOI":"10.1007\/978-3-642-31537-4_34"},{"issue":"3","key":"34_CR5","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1007\/s00221-009-1925-z","volume":"197","author":"MP Broderick","year":"2009","unstructured":"Broderick, M.P., Van Gemmert, A.W., Shill, H.A., Stelmach, G.E.: Hypometria and bradykinesia during drawing movements in individuals with parkinson\u2019s disease. Exp. Brain Res. 197(3), 223\u2013233 (2009)","journal-title":"Exp. Brain Res."},{"key":"34_CR6","doi-asserted-by":"publisher","unstructured":"Cavaliere, F., Della Cioppa, A., Marcelli, A., Parziale, A., Senatore, R.: Parkinson\u2019s disease diagnosis: towards grammar-based explainable artificial intelligence. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1\u20136 (2020). https:\/\/doi.org\/10.1109\/ISCC50000.2020.9219616","DOI":"10.1109\/ISCC50000.2020.9219616"},{"key":"34_CR7","doi-asserted-by":"publisher","first-page":"466","DOI":"10.1016\/j.procs.2018.10.141","volume":"141","author":"ND Cilia","year":"2018","unstructured":"Cilia, N.D., De Stefano, C., Fontanella, F., Di Freca, A.S.: An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis. Procedia Comput. Sci. 141, 466\u2013471 (2018)","journal-title":"Procedia Comput. Sci."},{"key":"34_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1007\/978-3-030-29891-3_13","volume-title":"Computer Analysis of Images and Patterns","author":"ND Cilia","year":"2019","unstructured":"Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Handwriting analysis to support Alzheimer\u2019s disease diagnosis: a preliminary study. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11679, pp. 143\u2013151. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-29891-3_13"},{"key":"34_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"683","DOI":"10.1007\/978-3-030-30645-8_62","volume-title":"Image Analysis and Processing \u2013 ICIAP 2019","author":"ND Cilia","year":"2019","unstructured":"Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Using handwriting features to characterize cognitive impairment. In: Ricci, E., Rota Bul\u00f2, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 683\u2013693. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-30645-8_62"},{"issue":"3","key":"34_CR10","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273\u2013297 (1995)","journal-title":"Mach. Learn."},{"key":"34_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1007\/978-3-030-68763-2_43","volume-title":"Pattern Recognition. ICPR International Workshops and Challenges","author":"G De Gregorio","year":"2021","unstructured":"De Gregorio, G., Desiato, D., Marcelli, A., Polese, G.: A multi classifier approach for supporting Alzheimer\u2019s diagnosis based on handwriting analysis. In: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 559\u2013574. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-68763-2_43"},{"key":"34_CR12","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.patrec.2018.05.013","volume":"121","author":"C De Stefano","year":"2019","unstructured":"De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn. Lett. 121, 37\u201345 (2019)","journal-title":"Pattern Recogn. Lett."},{"issue":"6","key":"34_CR13","doi-asserted-by":"publisher","first-page":"580","DOI":"10.1109\/TEVC.2004.837341","volume":"8","author":"A Della Cioppa","year":"2004","unstructured":"Della Cioppa, A., De Stefano, C., Marcelli, A.: On the role of population size and niche radius in fitness sharing. IEEE Trans. Evol. Comput. 8(6), 580\u2013592 (2004)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"34_CR14","doi-asserted-by":"publisher","first-page":"453","DOI":"10.1109\/TEVC.2006.882433","volume":"11","author":"A Della Cioppa","year":"2007","unstructured":"Della Cioppa, A., De Stefano, C., Marcelli, A.: Where are the niches? dynamic fitness sharing. IEEE Trans. Evol. Comput. 11(4), 453\u2013465 (2007)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"34_CR15","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/j.artmed.2016.01.004","volume":"67","author":"P Drot\u00e1r","year":"2016","unstructured":"Drot\u00e1r, P., Mekyska, J., Rektorov\u00e1, I., Masarov\u00e1, L., Sm\u00e9kal, Z., Faundez-Zanuy, M.: Evaluation of handwriting kinematics and pressure for differential diagnosis of parkinson\u2019s disease. Artif. Intell. Med. 67, 39\u201346 (2016)","journal-title":"Artif. Intell. Med."},{"key":"34_CR16","unstructured":"Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 202\u2013212 (1994)"},{"issue":"9","key":"34_CR17","doi-asserted-by":"publisher","first-page":"960","DOI":"10.2174\/1567205014666170309120708","volume":"14","author":"J Garre-Olmo","year":"2017","unstructured":"Garre-Olmo, J., Fa\u00fandez-Zanuy, M., L\u00f3pez-de Ipi\u00f1a, K., Calv\u00f3-Perxas, L., Turr\u00f3-Garriga, O.: Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, alzheimer disease and healthy controls. Curr. Alzheimer Res. 14(9), 960\u2013968 (2017)","journal-title":"Curr. Alzheimer Res."},{"key":"34_CR18","unstructured":"Gautier, S., Rosa-Neto, P., Morais, J.a., Webster, C.: World Alzheimer Report 2021: Journey through the diagnosis of dementia. ADI, London, UK (2021)"},{"key":"34_CR19","doi-asserted-by":"crossref","unstructured":"Gonzalez, F., Dasgupta, D., Kozma, R.: Combining negative selection and classification techniques for anomaly detection. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 1, p. 705\u2013710 (2002)","DOI":"10.1109\/CEC.2002.1007012"},{"key":"34_CR20","unstructured":"Gupta, K.D., Dasgupta, D.: Negative selection algorithm research and applications in the last decade: A review (2021)"},{"key":"34_CR21","doi-asserted-by":"publisher","unstructured":"Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278\u2013282 (1995). https:\/\/doi.org\/10.1109\/ICDAR.1995.598994","DOI":"10.1109\/ICDAR.1995.598994"},{"key":"34_CR22","unstructured":"Ishikawa, T., et al.: Handwriting features of multiple drawing tests for early detection of Alzheimer\u2019s disease: a preliminary result. In: MedInfo, pp. 168\u2013172 (2019)"},{"issue":"4","key":"34_CR23","doi-asserted-by":"publisher","first-page":"368","DOI":"10.1136\/jnnp.2007.131045","volume":"79","author":"J Jankovic","year":"2008","unstructured":"Jankovic, J.: Parkinson\u2019s disease: clinical features and diagnosis. J. Neurol. Neurosurgery Psychiatry 79(4), 368\u2013376 (2008)","journal-title":"J. Neurol. Neurosurgery Psychiatry"},{"issue":"10","key":"34_CR24","doi-asserted-by":"publisher","first-page":"1390","DOI":"10.1016\/j.ins.2008.12.015","volume":"179","author":"Z Ji","year":"2009","unstructured":"Ji, Z., Dasgupta, D.: V-detector: an efficient negative selection algorithm with \u201cprobably adequate\u2019\u2019 detector coverage. Inf. Sci. 179(10), 1390\u20131406 (2009)","journal-title":"Inf. Sci."},{"issue":"8","key":"34_CR25","doi-asserted-by":"publisher","first-page":"1136","DOI":"10.1109\/LSP.2018.2794500","volume":"25","author":"C Kahindo","year":"2018","unstructured":"Kahindo, C., El-Yacoubi, M.A., Garcia-Salicetti, S., Rigaud, A.S., Cristancho-Lacroix, V.: Characterizing early-stage Alzheimer through spatiotemporal dynamics of handwriting. IEEE Signal Process. Lett. 25(8), 1136\u20131140 (2018)","journal-title":"IEEE Signal Process. Lett."},{"key":"34_CR26","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.compbiomed.2017.01.004","volume":"82","author":"J Kawa","year":"2017","unstructured":"Kawa, J., Bednorz, A., Stepie\u0144, P., Derejczyk, J., Bugdol, M.: Spatial and dynamical handwriting analysis in mild cognitive impairment. Comput. Biol. Med. 82, 21\u201328 (2017)","journal-title":"Comput. Biol. Med."},{"key":"34_CR27","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1016\/B978-0-12-803468-2.00011-4","volume-title":"Applied Computing in Medicine and Health","author":"A Lasisi","year":"2016","unstructured":"Lasisi, A., Ghazali, R., Herawan, T.: Chapter 11 - application of real-valued negative selection algorithm to improve medical diagnosis. In: Al-Jumeily, D., Hussain, A., Mallucci, C., Oliver, C. (eds.) Applied Computing in Medicine and Health, pp. 231\u2013243. Emerging Topics in Computer Science and Applied Computing, Morgan Kaufmann, Boston (2016)"},{"issue":"5","key":"34_CR28","doi-asserted-by":"publisher","first-page":"535","DOI":"10.1007\/s12264-017-0174-6","volume":"33","author":"W Le","year":"2017","unstructured":"Le, W., Dong, J., Li, S., Korczyn, A.D.: Can biomarkers help the early diagnosis of parkinson\u2019s disease? Neurosci. Bull. 33(5), 535\u2013542 (2017)","journal-title":"Neurosci. Bull."},{"issue":"2","key":"34_CR29","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1007\/s12264-019-00433-1","volume":"36","author":"T Li","year":"2020","unstructured":"Li, T., Le, W.: Biomarkers for parkinson\u2019s disease: How good are they? Neurosci. Bull. 36(2), 183\u2013194 (2020)","journal-title":"Neurosci. Bull."},{"key":"34_CR30","doi-asserted-by":"publisher","first-page":"440","DOI":"10.1038\/s41582-020-0377-8","volume":"16","author":"MA Myszczynska","year":"2020","unstructured":"Myszczynska, M.A., et al.: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16, 440\u2013456 (2020)","journal-title":"Nat. Rev. Neurol."},{"key":"34_CR31","doi-asserted-by":"crossref","unstructured":"Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic programming for diagnosis of parkinson disease through handwriting analysis: performance vs. interpretability issues. Artif. Intell. Med. 111, 101984 (2021)","DOI":"10.1016\/j.artmed.2020.101984"},{"key":"34_CR32","doi-asserted-by":"crossref","unstructured":"Parziale, A., Della Cioppa, A., Senatore, R., Marcelli, A.: A decision tree for automatic diagnosis of parkinson\u2019s disease from offline drawing samples: Experiments and findings. In: Ricci, E., Rota Bul\u00f2, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) Image Analysis and Processing - ICIAP 2019, pp. 196\u2013206 (2019)","DOI":"10.1007\/978-3-030-30642-7_18"},{"key":"34_CR33","doi-asserted-by":"publisher","first-page":"13377","DOI":"10.1007\/s00521-019-04690-z","volume":"32","author":"A Parziale","year":"2020","unstructured":"Parziale, A., Senatore, R., Marcelli, A.: Exploring speed-accuracy tradeoff in reaching movements: a neurocomputational model. Neural Comput. Appl. 32, 13377\u201313403 (2020)","journal-title":"Neural Comput. Appl."},{"issue":"8","key":"34_CR34","doi-asserted-by":"publisher","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","volume":"27","author":"H Peng","year":"2005","unstructured":"Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226\u20131238 (2005)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"34_CR35","doi-asserted-by":"crossref","unstructured":"Pereira, C.R., et al.: A step towards the automated diagnosis of parkinson\u2019s disease: analyzing handwriting movements. In: 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 171\u2013176 (2015)","DOI":"10.1109\/CBMS.2015.34"},{"key":"34_CR36","doi-asserted-by":"crossref","unstructured":"Pereira, C.R., Weber, S.A.T., Hook, C., Rosa, G.H., Papa, J.P.: Deep learning-aided parkinson\u2019s disease diagnosis from handwritten dynamics. In: 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 340\u2013346 (Oct 2016)","DOI":"10.1109\/SIBGRAPI.2016.054"},{"key":"34_CR37","doi-asserted-by":"crossref","unstructured":"Pereira, C.R., et al.: A new computer vision-based approach to aid the diagnosis of Parkinson\u2019s disease. Comput. Methods Programs Biomed. 136, 79\u201388 (2016)","DOI":"10.1016\/j.cmpb.2016.08.005"},{"key":"34_CR38","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"290","DOI":"10.1007\/978-3-319-23222-5_36","volume-title":"New Trends in Image Analysis and Processing \u2013 ICIAP 2015 Workshops","author":"G Pirlo","year":"2015","unstructured":"Pirlo, G., Diaz, M., Ferrer, M.A., Impedovo, D., Occhionero, F., Zurlo, U.: Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 290\u2013297. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-23222-5_36"},{"key":"34_CR39","volume-title":"World Alzheimer Report 2015: The Global Impact of Dementia","author":"M Prince","year":"2015","unstructured":"Prince, M., Wimo, A., Guercet, M., Ali, G.C., Wu, Y.T., Prina, M.: World Alzheimer Report 2015: The Global Impact of Dementia. ADI, London, UK (2015)"},{"issue":"2","key":"34_CR40","doi-asserted-by":"publisher","first-page":"363","DOI":"10.1016\/j.humov.2012.12.008","volume":"32","author":"S Rosenblum","year":"2013","unstructured":"Rosenblum, S., Engel-Yeger, B., Fogel, Y.: Age-related changes in executive control and their relationships with activity performance in handwriting. Hum. Mov. Sci. 32(2), 363\u2013376 (2013)","journal-title":"Hum. Mov. Sci."},{"key":"34_CR41","doi-asserted-by":"crossref","unstructured":"Senatore, R., Marcelli, A.: A neural scheme for procedural motor learning of handwriting. In: International Conference on Frontiers on Handwriting Recognition. pp. 659\u2013664. Springer (2012)","DOI":"10.1109\/ICFHR.2012.160"},{"key":"34_CR42","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.humov.2018.04.007","volume":"65","author":"R Senatore","year":"2019","unstructured":"Senatore, R., Marcelli, A.: A paradigm for emulating the early learning stage of handwriting: performance comparison between healthy controls and parkinson\u2019s disease patients in drawing loop shapes. Hum. Mov. Sci. 65, 89\u2013101 (2019)","journal-title":"Hum. Mov. Sci."},{"key":"34_CR43","doi-asserted-by":"crossref","unstructured":"Tanveer, M., et al.: Machine learning techniques for the diagnosis of Alzheimer\u2019s disease: a review. ACM Trans. Multimedia Comput. Commun. Appl. 16(1s), 1\u201335 (2020)","DOI":"10.1145\/3344998"},{"issue":"1","key":"34_CR44","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1006\/exnr.1997.6507","volume":"146","author":"HL Teulings","year":"1997","unstructured":"Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E., Adler, C.H.: Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 146(1), 159\u2013170 (1997)","journal-title":"Exp. Neurol."},{"issue":"2\u20133","key":"34_CR45","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1016\/0167-9457(91)90010-U","volume":"10","author":"HL Teulings","year":"1991","unstructured":"Teulings, H.L., Stelmach, G.E.: Control of stroke size, peak acceleration, and stroke duration in parkinsonian handwriting. Hum. Mov. Sci. 10(2\u20133), 315\u2013334 (1991)","journal-title":"Hum. Mov. Sci."},{"issue":"11","key":"34_CR46","doi-asserted-by":"publisher","first-page":"1502","DOI":"10.1136\/jnnp.74.11.1502","volume":"74","author":"A Van Gemmert","year":"2003","unstructured":"Van Gemmert, A., Adler, C.H., Stelmach, G.: Parkinson\u2019s disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurgery Psychiatry 74(11), 1502\u20131508 (2003)","journal-title":"J. Neurol. Neurosurgery Psychiatry"},{"issue":"21","key":"34_CR47","doi-asserted-by":"publisher","first-page":"4666","DOI":"10.3390\/app9214666","volume":"9","author":"G Vessio","year":"2019","unstructured":"Vessio, G.: Dynamic handwriting analysis for neurodegenerative disease assessment: A literary review. Appl. Sci. 9(21), 4666 (2019)","journal-title":"Appl. Sci."},{"issue":"4","key":"34_CR48","doi-asserted-by":"publisher","first-page":"P228","DOI":"10.1093\/geronb\/61.4.P228","volume":"61","author":"P Werner","year":"2006","unstructured":"Werner, P., Rosenblum, S., Bar-On, G., Heinik, J., Korczyn, A.: Handwriting process variables discriminating mild Alzheimer\u2019s disease and mild cognitive impairment. J. Gerontol. B Psychol. Sci. Soc. Sci. 61(4), P228\u2013P236 (2006)","journal-title":"J. Gerontol. B Psychol. Sci. Soc. Sci."},{"key":"34_CR49","volume-title":"Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques","author":"IH Witten","year":"2016","unstructured":"Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)","edition":"4"}],"container-title":["Lecture Notes in Computer Science","Applications of Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-02462-7_34","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,22]],"date-time":"2024-09-22T08:03:17Z","timestamp":1726992197000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-02462-7_34"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031024610","9783031024627"],"references-count":49,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-02462-7_34","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"15 April 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EvoApplications","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Applications of Evolutionary Computation (Part of EvoStar)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Madrid","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 April 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 April 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"evoapplications2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.evostar.org\/2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"69% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.1","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.56","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}