{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T17:42:38Z","timestamp":1726162958665},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031023743"},{"type":"electronic","value":"9783031023750"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-02375-0_5","type":"book-chapter","created":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T11:03:10Z","timestamp":1652180590000},"page":"62-74","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Interference Distillation for\u00a0Underwater Fish Recognition"],"prefix":"10.1007","author":[{"given":"Jian","family":"Pang","sequence":"first","affiliation":[]},{"given":"Weifeng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Baodi","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Dapeng","family":"Tao","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xiaoping","family":"Lu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,11]]},"reference":[{"key":"5_CR1","doi-asserted-by":"crossref","unstructured":"Anantharajah, K., et al.: Local inter-session variability modelling for object classification. In: IEEE Winter Conference on Applications of Computer Vision, pp. 309\u2013316. IEEE (2014)","DOI":"10.1109\/WACV.2014.6836084"},{"key":"5_CR2","doi-asserted-by":"crossref","unstructured":"Chuang, M.C., Hwang, J.N., Rose, C.S.: Aggregated segmentation of fish from conveyor belt videos. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1807\u20131811. IEEE (2013)","DOI":"10.1109\/ICASSP.2013.6637964"},{"key":"5_CR3","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. Ieee (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"5_CR4","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"5_CR5","unstructured":"He, L., Liao, X., Liu, W., Liu, X., Cheng, P., Mei, T.: Fastreid: a pytorch toolbox for general instance re-identification. arXiv preprint arXiv:2006.02631 (2020)"},{"key":"5_CR6","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)"},{"key":"5_CR7","volume-title":"Croatian Fish Dataset: Fine-grained Classification of Fish Species in Their Natural Habitat","author":"J Jager","year":"2015","unstructured":"Jager, J., Simon, M., Denzler, J., Wolff, V., Fricke-Neuderth, K., Kruschel, C.: Croatian Fish Dataset: Fine-grained Classification of Fish Species in Their Natural Habitat. BMCV, Swansea (2015)"},{"key":"5_CR8","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015. arXiv preprint arXiv:1412.6980 9 (2015)"},{"key":"5_CR9","doi-asserted-by":"publisher","first-page":"4376","DOI":"10.1109\/TIP.2019.2955241","volume":"29","author":"C Li","year":"2019","unstructured":"Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376\u20134389 (2019)","journal-title":"IEEE Trans. Image Process."},{"key":"5_CR10","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1016\/j.ins.2021.01.016","volume":"559","author":"H Li","year":"2021","unstructured":"Li, H., Pang, J., Tao, D., Yu, Z.: Cross adversarial consistency self-prediction learning for unsupervised domain adaptation person re-identification. Inf. Sci. 559, 46\u201360 (2021)","journal-title":"Inf. Sci."},{"key":"5_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/978-3-030-41404-7_2","volume-title":"Pattern Recognition","author":"X Mo","year":"2020","unstructured":"Mo, X., Wei, T., Zhang, H., Huang, Q., Luo, W.: Label-smooth learning for fine-grained visual categorization. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 17\u201331. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-41404-7_2"},{"key":"5_CR12","doi-asserted-by":"publisher","first-page":"78503","DOI":"10.1109\/ACCESS.2018.2885055","volume":"6","author":"C Qiu","year":"2018","unstructured":"Qiu, C., Zhang, S., Wang, C., Yu, Z., Zheng, H., Zheng, B.: Improving transfer learning and squeeze-and-excitation networks for small-scale fine-grained fish image classification. IEEE Access 6, 78503\u201378512 (2018)","journal-title":"IEEE Access"},{"key":"5_CR13","first-page":"12","volume":"8","author":"T Saitoh","year":"2016","unstructured":"Saitoh, T., Shibata, T., Miyazono, T.: Feature points based fish image recognition. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 8, 12\u201322 (2016)","journal-title":"Int. J. Comput. Inf. Syst. Ind. Manage. Appl."},{"key":"5_CR14","doi-asserted-by":"crossref","unstructured":"Shen, Z., He, Z., Xue, X.: Meal: multi-model ensemble via adversarial learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4886\u20134893 (2019)","DOI":"10.1609\/aaai.v33i01.33014886"},{"key":"5_CR15","unstructured":"Shen, Z., Savvides, M.: Meal v2: Boosting vanilla resnet-50 to 80%+ top-1 accuracy on imagenet without tricks. arXiv preprint arXiv:2009.08453 (2020)"},{"key":"5_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"779","DOI":"10.1007\/978-3-030-41404-7_55","volume-title":"Pattern Recognition","author":"N Sun","year":"2020","unstructured":"Sun, N., Mo, X., Wei, T., Zhang, D., Luo, W.: The effectiveness of noise in data augmentation for fine-grained image classification. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 779\u2013792. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-41404-7_55"},{"key":"5_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1007\/978-3-030-58529-7_2","volume-title":"Computer Vision \u2013 ECCV 2020","author":"D Walawalkar","year":"2020","unstructured":"Walawalkar, D., Shen, Z., Savvides, M.: Online ensemble model compression using knowledge distillation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 18\u201335. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58529-7_2"},{"key":"5_CR18","doi-asserted-by":"crossref","unstructured":"Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans. Pattern Anal. Mach. Intell. (2021)","DOI":"10.1109\/TPAMI.2021.3055564"},{"key":"5_CR19","unstructured":"Wang, Q., Huang, W., Xiong, Z., Li, X.: Looking closer at the scene: multiscale representation learning for remote sensing image scene classification. IEEE Trans. Neural Networks Learn. Syst. (2020)"},{"key":"5_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1007\/978-3-030-41404-7_4","volume-title":"Pattern Recognition","author":"Z Wen","year":"2020","unstructured":"Wen, Z., Ke, Z., Xie, W., Shen, L.: Clustering-based adaptive dropout for CNN-based classification. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 46\u201358. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-41404-7_4"},{"issue":"2\u20133","key":"5_CR21","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1016\/j.fishres.2006.04.009","volume":"80","author":"DJ White","year":"2006","unstructured":"White, D.J., Svellingen, C., Strachan, N.J.: Automated measurement of species and length of fish by computer vision. Fish. Res. 80(2\u20133), 203\u2013210 (2006)","journal-title":"Fish. Res."},{"key":"5_CR22","doi-asserted-by":"crossref","unstructured":"Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Learning generalisable omni-scale representations for person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. (2021)","DOI":"10.1109\/TPAMI.2021.3069237"},{"key":"5_CR23","doi-asserted-by":"crossref","unstructured":"Zhuang, P., Wang, Y., Qiao, Y.: Wildfish: a large benchmark for fish recognition in the wild. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1301\u20131309 (2018)","DOI":"10.1145\/3240508.3240616"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-02375-0_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T11:03:25Z","timestamp":1652180605000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-02375-0_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031023743","9783031023750"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-02375-0_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"11 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Jeju Island","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Korea (Republic of)","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 November 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 November 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"acpr2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.acpr2021.org","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"154","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"85","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}