{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T04:58:33Z","timestamp":1742965113113,"version":"3.40.3"},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031023743"},{"type":"electronic","value":"9783031023750"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-02375-0_24","type":"book-chapter","created":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T11:03:10Z","timestamp":1652180590000},"page":"326-337","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Spatial Pyramid-based Wavelet Embedding Deep Convolutional Neural Network for Semantic Segmentation"],"prefix":"10.1007","author":[{"given":"Jin","family":"Liu","sequence":"first","affiliation":[]},{"given":"Yazhou","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Quansen","family":"Sun","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,11]]},"reference":[{"key":"24_CR1","doi-asserted-by":"crossref","unstructured":"Li, B., Chenli, C., Xu, X., Jung, T., Shi, Y.: Exploiting computation power of blockchain for biomedical image segmentation. In: Computer Vision and Pattern Recognition, pp. 4321\u20134330 (2019)","DOI":"10.1109\/CVPRW.2019.00339"},{"key":"24_CR2","doi-asserted-by":"publisher","unstructured":"Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA ML-CDS 2018 2018. LNCS, vol. 11045, pp. 3\u201311. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00889-5_1","DOI":"10.1007\/978-3-030-00889-5_1"},{"issue":"9","key":"24_CR3","doi-asserted-by":"publisher","first-page":"4376","DOI":"10.1109\/TIP.2019.2910667","volume":"28","author":"Q Wang","year":"2019","unstructured":"Wang, Q., Gao, J., Li, X.: Weakly supervised adversarial domain adaptation for semantic segmentation in urban scenes. IEEE Trans. Image Process. 28(9), 4376\u20134386 (2019)","journal-title":"IEEE Trans. Image Process."},{"key":"24_CR4","doi-asserted-by":"crossref","unstructured":"Zhou, B., Schwarting, W., Rus, D., Alonso-Mora, J.: Joint multi-policy behavior estimation and receding- horizon trajectory planning for automated urban driving. In: International Conference on Robotics and Automation (ICRA) (2018)","DOI":"10.1109\/ICRA.2018.8461138"},{"key":"24_CR5","doi-asserted-by":"crossref","unstructured":"Albrecht, S.V., et al.: Interpretable goal-based prediction and planning for autonomous driving. In: International Conference on Robotics and Automation (ICRA) (2020)","DOI":"10.1109\/ICRA48506.2021.9560849"},{"key":"24_CR6","doi-asserted-by":"crossref","unstructured":"Li, X., Zhao, Z., Wang, Q.: ABSSNet: attention-based spatial segmentation network for traffic scene understanding. IEEE Trans. Cybernet. PP, 1\u201311 (2021)","DOI":"10.1109\/TCYB.2021.3050558"},{"issue":"4","key":"24_CR7","doi-asserted-by":"publisher","first-page":"640","DOI":"10.1109\/TPAMI.2016.2572683","volume":"39","author":"E Shelhamer","year":"2017","unstructured":"Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640\u2013651 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"24_CR8","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84\u201390 (2017)","journal-title":"Commun. ACM"},{"issue":"12","key":"24_CR9","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","volume":"39","author":"V Badrinarayanan","year":"2017","unstructured":"Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481\u20132495 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"24_CR10","doi-asserted-by":"crossref","unstructured":"Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Computer Vision and Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.207"},{"key":"24_CR11","doi-asserted-by":"crossref","unstructured":"Lin, G., et al.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation (2016)","DOI":"10.1109\/CVPR.2017.549"},{"key":"24_CR12","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Bro, T.: U-Net: convolutional networks for biomedical image segmentation. In: Computer Vision and Pattern Recognition (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"issue":"4","key":"24_CR13","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"L Chen","year":"2018","unstructured":"Chen, L., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834\u2013848 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"24_CR14","doi-asserted-by":"crossref","unstructured":"Chen, L.-C., Zhu, Y., Papandreou, G.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Computer Vision and Pattern Recognition (2018)","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"24_CR15","doi-asserted-by":"crossref","unstructured":"Li, X., et al.: Spatial pyramid based graph reasoning for semantic segmentation. In: Computer Vision and Pattern Recognition (2020)","DOI":"10.1109\/CVPR42600.2020.00897"},{"key":"24_CR16","doi-asserted-by":"crossref","unstructured":"Liu, W., Yan, Q., Zhao, Y.: Densely self-guided wavelet network for image denoising. In: Computer Vision and Pattern Recognition (2020)","DOI":"10.1109\/CVPRW50498.2020.00224"},{"key":"24_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"126","DOI":"10.1007\/978-3-030-58452-8_8","volume-title":"Computer Vision \u2013 ECCV 2020","author":"M Xiao","year":"2020","unstructured":"Xiao, M., et al.: Invertible image rescaling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 126\u2013144. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_8"},{"key":"24_CR18","unstructured":"Williams, T., Li, R.: Wavelet pooling for convolutional neural networks. In: International Conference on Learning Representations (2018)"},{"key":"24_CR19","unstructured":"Cotter, F.B.: Uses of Complex Wavelets in Deep Convolutional Neural Networks. University of Cambridge (2019)"},{"key":"24_CR20","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Computer Vision and Pattern Recognition (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"24_CR21","unstructured":"Chen, K., et al.: Feature pyramid grids. In: Computer Vision and Pattern Recognition (2020)"},{"key":"24_CR22","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: International Conference on Learning Representations (2015)"},{"key":"24_CR23","doi-asserted-by":"crossref","unstructured":"Wang, H., et al.: High frequency component helps explain the generalization of convolutional neural networks (2019)","DOI":"10.1109\/CVPR42600.2020.00871"},{"key":"24_CR24","doi-asserted-by":"crossref","unstructured":"Peng, C., et al.: Large kernel matters -- improve semantic segmentation by global convolutional network (2017)","DOI":"10.1109\/CVPR.2017.189"},{"key":"24_CR25","doi-asserted-by":"crossref","unstructured":"Wang, P., et al.: Understanding convolution for semantic segmentation. In: Conference on Applications of Computer Vision, pp. 1451\u20131460 (2018)","DOI":"10.1109\/WACV.2018.00163"},{"issue":"4","key":"24_CR26","doi-asserted-by":"publisher","first-page":"909","DOI":"10.1109\/TPAMI.2018.2890637","volume":"42","author":"R Zhang","year":"2020","unstructured":"Zhang, R., et al.: Perspective-adaptive convolutions for scene parsing. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 909\u2013924 (2020)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"24_CR27","doi-asserted-by":"crossref","unstructured":"Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Computer Vision and Pattern Recognition, pp. 6230\u20136239 (2017)","DOI":"10.1109\/CVPR.2017.660"},{"key":"24_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"605","DOI":"10.1007\/978-3-030-01246-5_36","volume-title":"Computer Vision \u2013 ECCV 2018","author":"T-W Ke","year":"2018","unstructured":"Ke, T.-W., Hwang, J.-J., Liu, Z., Yu, S.X.: Adaptive affinity fields for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 605\u2013621. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01246-5_36"},{"key":"24_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1007\/978-3-030-01240-3_17","volume-title":"Computer Vision \u2013 ECCV 2018","author":"H Zhao","year":"2018","unstructured":"Zhao, H., Zhang, Y., Liu, S., Shi, J., Loy, C., Lin, D., Jia, J.: PSANet: Point-wise Spatial Attention Network for Scene Parsing. In: Ferrari, Vittorio, Hebert, Martial, Sminchisescu, Cristian, Weiss, Yair (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270\u2013286. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01240-3_17"},{"key":"24_CR30","doi-asserted-by":"crossref","unstructured":"Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: Computer Vision and Pattern Recognition, pp. 3684\u20133692 (2018)","DOI":"10.1109\/CVPR.2018.00388"},{"key":"24_CR31","doi-asserted-by":"crossref","unstructured":"Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y.: Facebook AI, Graph-based global reasoning networks. arXiv preprint arXiv:1811.12814 (2018)","DOI":"10.1109\/CVPR.2019.00052"},{"key":"24_CR32","doi-asserted-by":"crossref","unstructured":"Fu, J., et al.: Dual attention network for scene segmentation. arXiv preprint arXiv:1809.02983, 2018","DOI":"10.1109\/CVPR.2019.00326"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-02375-0_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T11:06:46Z","timestamp":1652180806000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-02375-0_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031023743","9783031023750"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-02375-0_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"11 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Jeju Island","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Korea (Republic of)","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 November 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 November 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"acpr2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.acpr2021.org","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"154","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"85","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}