{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T16:36:13Z","timestamp":1743006973200,"version":"3.40.3"},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031020551"},{"type":"electronic","value":"9783031020568"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-02056-8_14","type":"book-chapter","created":{"date-parts":[[2022,4,19]],"date-time":"2022-04-19T10:03:00Z","timestamp":1650362580000},"page":"212-227","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Creating Diverse Ensembles for\u00a0Classification with\u00a0Genetic Programming and\u00a0Neuro-MAP-Elites"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-7547-9798","authenticated-orcid":false,"given":"Kyle","family":"Nickerson","sequence":"first","affiliation":[]},{"given":"Antonina","family":"Kolokolova","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6382-0602","authenticated-orcid":false,"given":"Ting","family":"Hu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,4,13]]},"reference":[{"key":"14_CR1","doi-asserted-by":"crossref","unstructured":"Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming, pp. 111\u2013116, July 2008","DOI":"10.1109\/CEC.2008.4630784"},{"key":"14_CR2","doi-asserted-by":"crossref","unstructured":"Beadle, L., Johnson, C.: Semantically driven mutation in genetic programming, pp. 1336\u20131342, May 2009","DOI":"10.1109\/CEC.2009.4983099"},{"issue":"227","key":"14_CR3","first-page":"357","volume":"39","author":"J Berkson","year":"1944","unstructured":"Berkson, J.: Application of the logistic function to bio-assay. J. Am. Statist. Assoc. 39(227), 357\u2013365 (1944)","journal-title":"J. Am. Statist. Assoc."},{"key":"14_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-72812-0_1","volume-title":"Genetic Programming","author":"S Boisvert","year":"2021","unstructured":"Boisvert, S., Sheppard, J.W.: Quality diversity genetic programming for learning decision tree ensembles. In: Hu, T., Louren\u00e7o, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 3\u201318. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-72812-0_1"},{"key":"14_CR5","volume-title":"Linear Genetic Programming","author":"MF Brameier","year":"2007","unstructured":"Brameier, M.F., Banzhaf, W.: Linear Genetic Programming, 1st edn. Springer Publishing Company Inc., Cham (2007)","edition":"1"},{"issue":"1","key":"14_CR6","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"issue":"1","key":"14_CR7","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1016\/j.inffus.2004.04.004","volume":"6","author":"G Brown","year":"2005","unstructured":"Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1), 5\u201320 (2005)","journal-title":"Inf. Fusion"},{"key":"14_CR8","doi-asserted-by":"crossref","unstructured":"Canaan, R., Togelius, J., Nealen, A., Menzel, S.: Diverse agents for ad-hoc cooperation in Hanabi. In: 2019 IEEE Conference on Games (CoG), pp. 1\u20138 (2019)","DOI":"10.1109\/CIG.2019.8847944"},{"key":"14_CR9","doi-asserted-by":"crossref","unstructured":"Cardoso, R.P., Hart, E., Kurka, D.B., Pitt, J.V.: Using novelty search to explicitly create diversity in ensembles of classifiers. In: GECCO 2021, pp. 849\u2013857. ACM, New York, NY, USA (2021)","DOI":"10.1145\/3449639.3459308"},{"key":"14_CR10","doi-asserted-by":"publisher","first-page":"503","DOI":"10.1038\/nature14422","volume":"521","author":"A Cully","year":"2015","unstructured":"Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521, 503\u2013507 (2015)","journal-title":"Nature"},{"key":"14_CR11","doi-asserted-by":"crossref","unstructured":"Dolson, E., Lalejini, A., Ofria, C.: Exploring genetic programming systems with map-elites, August 2018","DOI":"10.7287\/peerj.preprints.27154v1"},{"key":"14_CR12","doi-asserted-by":"crossref","unstructured":"Fontaine, M.C., Lee, S., Soros, L.B., De Mesentier Silva, F., Togelius, J., Hoover, A.K.: Mapping hearthstone deck spaces through map-elites with sliding boundaries. In: GECCO 2019, pp. 161\u2013169. ACM, New York, NY, USA (2019)","DOI":"10.1145\/3321707.3321794"},{"key":"14_CR13","doi-asserted-by":"crossref","unstructured":"Gagn\u00e9, C., Sebag, M., Schoenauer, M., Tomassini, M.: Ensemble learning for free with evolutionary algorithms? In: GECCO 2007, pp. 1782\u20131789. ACM, New York, NY, USA (2007)","DOI":"10.1145\/1276958.1277317"},{"key":"14_CR14","doi-asserted-by":"crossref","unstructured":"Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural content generation through quality diversity (2019)","DOI":"10.1109\/CIG.2019.8848053"},{"key":"14_CR15","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-84858-7","volume-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"T Hastie","year":"2009","unstructured":"Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Cham (2009). https:\/\/doi.org\/10.1007\/978-0-387-84858-7","edition":"2"},{"key":"14_CR16","unstructured":"Higgins, I., t al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)"},{"issue":"5786","key":"14_CR17","doi-asserted-by":"publisher","first-page":"504","DOI":"10.1126\/science.1127647","volume":"313","author":"GE Hinton","year":"2006","unstructured":"Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504\u2013507 (2006)","journal-title":"Science"},{"key":"14_CR18","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2014)"},{"issue":"3","key":"14_CR19","first-page":"4","volume":"1","author":"JR Koza","year":"1997","unstructured":"Koza, J.R.: Genetic programming: automatic programming of computers. EvoNews 1(3), 4\u20137 (1997)","journal-title":"EvoNews"},{"key":"14_CR20","doi-asserted-by":"crossref","unstructured":"Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: GECCO 2009, pp. 987\u2013994. ACM, New York, NY, USA (2009)","DOI":"10.1145\/1569901.1570036"},{"issue":"2","key":"14_CR21","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1162\/EVCO_a_00025","volume":"19","author":"J Lehman","year":"2011","unstructured":"Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189\u2013223 (2011)","journal-title":"Evol. Comput."},{"key":"14_CR22","unstructured":"Miller, J.: Cartesian Genetic Programming, vol. 43, June 2003"},{"key":"14_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-642-32937-1_3","volume-title":"Parallel Problem Solving from Nature - PPSN XII","author":"A Moraglio","year":"2012","unstructured":"Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21\u201331. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-32937-1_3"},{"key":"14_CR24","unstructured":"Mouret, J., Clune, J.: Illuminating search spaces by mapping elites (2015)"},{"key":"14_CR25","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1007\/s10710-010-9121-2","volume":"12","author":"QU Nguyen","year":"2011","unstructured":"Nguyen, Q.U., Hoai, N., O\u2019Neill, M., McKay, R., Galv\u00e1n-L\u00f3pez, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Program. Evol. Mach. 12, 91\u2013119 (2011)","journal-title":"Genetic Program. Evol. Mach."},{"issue":"1","key":"14_CR26","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1186\/s13040-017-0154-4","volume":"10","author":"RS Olson","year":"2017","unstructured":"Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Mining 10(1), 36 (2017)","journal-title":"BioData Mining"},{"key":"14_CR27","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825\u20132830 (2011)","journal-title":"J. Mach. Learn. Res."},{"key":"14_CR28","doi-asserted-by":"crossref","unstructured":"Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61\u201374. MIT Press (1999)","DOI":"10.7551\/mitpress\/1113.003.0008"},{"key":"14_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1007\/978-3-030-44094-7_10","volume-title":"Genetic Programming","author":"NM Rodrigues","year":"2020","unstructured":"Rodrigues, N.M., Batista, J.E., Silva, S.: Ensemble genetic programming. In: Hu, T., Louren\u00e7o, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 151\u2013166. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-44094-7_10"},{"issue":"1","key":"14_CR30","doi-asserted-by":"publisher","first-page":"284","DOI":"10.1186\/s12859-021-04209-1","volume":"22","author":"C Sha","year":"2021","unstructured":"Sha, C., Cuperlovic-Culf, M., Hu, T.: Smile: systems metabolomics using interpretable learning and evolution. BMC Bioinform. 22(1), 284 (2021)","journal-title":"BMC Bioinform."},{"issue":"2","key":"14_CR31","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1162\/106365602320169811","volume":"10","author":"KO Stanley","year":"2002","unstructured":"Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99\u2013127 (2002)","journal-title":"Evol. Comput."},{"issue":"4","key":"14_CR32","doi-asserted-by":"publisher","first-page":"623","DOI":"10.1109\/TEVC.2017.2735550","volume":"22","author":"V Vassiliades","year":"2018","unstructured":"Vassiliades, V., Chatzilygeroudis, K., Mouret, J.: Using centroidal voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Trans. Evol. Comput. 22(4), 623\u2013630 (2018)","journal-title":"IEEE Trans. Evol. Comput."}],"container-title":["Lecture Notes in Computer Science","Genetic Programming"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-02056-8_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,20]],"date-time":"2023-11-20T05:01:25Z","timestamp":1700456485000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-02056-8_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031020551","9783031020568"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-02056-8_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"13 April 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EuroGP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Genetic Programming (Part of EvoStar)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Madrid","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 April 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 April 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eurogp2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.evostar.org\/2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"35","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"34% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}