{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:16:43Z","timestamp":1726226203473},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030984632"},{"type":"electronic","value":"9783030984649"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-98464-9_5","type":"book-chapter","created":{"date-parts":[[2022,3,8]],"date-time":"2022-03-08T15:03:09Z","timestamp":1646751789000},"page":"52-59","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["A Zero-Shot Learning Approach to Classifying Requirements: A Preliminary Study"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3433-4653","authenticated-orcid":false,"given":"Waad","family":"Alhoshan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8556-8655","authenticated-orcid":false,"given":"Liping","family":"Zhao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0636-5663","authenticated-orcid":false,"given":"Alessio","family":"Ferrari","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4355-7987","authenticated-orcid":false,"given":"Keletso J.","family":"Letsholo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,3,9]]},"reference":[{"issue":"6","key":"5_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10664-021-09986-0","volume":"26","author":"DM Berry","year":"2021","unstructured":"Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empir. Softw. Eng. 26(6), 1\u201377 (2021). https:\/\/doi.org\/10.1007\/s10664-021-09986-0","journal-title":"Empir. Softw. Eng."},{"key":"5_CR2","unstructured":"Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)"},{"key":"5_CR3","unstructured":"Dabrowski, J., Letier, E., Perini, A., Susi, A.: App review analysis for software engineering: a systematic literature review. University College London, Technical report (2020)"},{"key":"5_CR4","doi-asserted-by":"crossref","unstructured":"Dalpiaz, F., Dell\u2019Anna, D., Aydemir, F.B., \u00c7evikol, S.: Requirements classification with interpretable machine learning and dependency parsing. In: RE 2019, pp. 142\u2013152. IEEE (2019)","DOI":"10.1109\/RE.2019.00025"},{"key":"5_CR5","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"issue":"6","key":"5_CR6","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1109\/MS.2017.4121207","volume":"34","author":"A Ferrari","year":"2017","unstructured":"Ferrari, A., Dell\u2019Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language requirements processing: a 4d vision. IEEE Softw. 34(6), 28\u201335 (2017)","journal-title":"IEEE Softw."},{"key":"5_CR7","doi-asserted-by":"crossref","unstructured":"Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: NoRBERT: transfer learning for requirements classification. In: RE 2020, pp. 169\u2013179. IEEE (2020)","DOI":"10.1109\/RE48521.2020.00028"},{"key":"5_CR8","doi-asserted-by":"crossref","unstructured":"Kurtanovi\u0107, Z., Maalej, W.: Automatically classifying functional and non-functional requirements using supervised machine learning. In: RE 2017, pp. 490\u2013495. IEEE (2017)","DOI":"10.1109\/RE.2017.82"},{"key":"5_CR9","unstructured":"Liu, Y., et al.: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)"},{"issue":"3","key":"5_CR10","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1007\/s00766-016-0251-9","volume":"21","author":"W Maalej","year":"2016","unstructured":"Maalej, W., Kurtanovi\u0107, Z., Nabil, H., Stanik, C.: On the automatic classification of app reviews. Requirements Eng. 21(3), 311\u2013331 (2016). https:\/\/doi.org\/10.1007\/s00766-016-0251-9","journal-title":"Requirements Eng."},{"issue":"10","key":"5_CR11","doi-asserted-by":"publisher","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","volume":"22","author":"SJ Pan","year":"2009","unstructured":"Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345\u20131359 (2009)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"5_CR12","unstructured":"Pushp, P.K., Srivastava, M.M.: Train once, test anywhere: zero-shot learning for text classification. arXiv preprint arXiv:1712.05972 (2017)"},{"key":"5_CR13","unstructured":"Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training. Technical report, OpenAI (2018)"},{"key":"5_CR14","unstructured":"Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019)"},{"key":"5_CR15","doi-asserted-by":"crossref","unstructured":"Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)","DOI":"10.18653\/v1\/D19-1410"},{"key":"5_CR16","unstructured":"Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: ICML 2015, pp. 2152\u20132161 (2015)"},{"key":"5_CR17","doi-asserted-by":"crossref","unstructured":"Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in natural language processing. In: NACL 2019, pp. 15\u201318 (2019)","DOI":"10.18653\/v1\/N19-5004"},{"key":"5_CR18","unstructured":"Vaswani, A., et al.: Attention is all you need. In: NeurIPS 2017, pp. 5998\u20136008 (2017)"},{"key":"5_CR19","doi-asserted-by":"crossref","unstructured":"Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: MiniLM: deep self-attention distillation for task-agnostic compression of pre-trained transformers. arXiv preprint arXiv:2002.10957 (2020)","DOI":"10.18653\/v1\/2021.findings-acl.188"},{"issue":"1","key":"5_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40537-016-0043-6","volume":"3","author":"K Weiss","year":"2016","unstructured":"Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1\u201340 (2016). https:\/\/doi.org\/10.1186\/s40537-016-0043-6","journal-title":"J. Big Data"},{"key":"5_CR21","doi-asserted-by":"crossref","unstructured":"Wolf, T., Debut, L., Sanh, V., et al.: Transformers: state-of-the-art natural language processing. In: EMNLP 2020, pp. 38\u201345 (2020)","DOI":"10.18653\/v1\/2020.emnlp-demos.6"},{"key":"5_CR22","unstructured":"Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: NeurIPS 2019, vol. 32 (2019)"},{"key":"5_CR23","doi-asserted-by":"crossref","unstructured":"Yin, W., Hay, J., Roth, D.: Benchmarking zero-shot text classification: datasets, evaluation and entailment approach. CoRR abs\/1909.00161 (2019)","DOI":"10.18653\/v1\/D19-1404"},{"key":"5_CR24","doi-asserted-by":"crossref","unstructured":"Zhao, L., et al.: Natural language processing for requirements engineering: a systematic mapping study. ACM Comput. Surv. 54(3), 55:1\u201355:41 (2021)","DOI":"10.1145\/3444689"}],"container-title":["Lecture Notes in Computer Science","Requirements Engineering: Foundation for Software Quality"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-98464-9_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,16]],"date-time":"2022-03-16T00:10:39Z","timestamp":1647389439000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-98464-9_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783030984632","9783030984649"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-98464-9_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"9 March 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"REFSQ","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Working Conference on Requirements Engineering: Foundation for Software Quality","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Birmingham","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 March 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 March 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"refsq2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2022.refsq.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}