{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T16:38:24Z","timestamp":1726159104391},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030982591"},{"type":"electronic","value":"9783030982607"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-98260-7_2","type":"book-chapter","created":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T12:17:52Z","timestamp":1648815472000},"page":"26-38","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Obstacle Detection in Real and Synthetic Harbour Scenarios"],"prefix":"10.1007","author":[{"given":"Nicol\u00f2","family":"Faggioni","sequence":"first","affiliation":[]},{"given":"Nicola","family":"Leonardi","sequence":"additional","affiliation":[]},{"given":"Filippo","family":"Ponzini","sequence":"additional","affiliation":[]},{"given":"Luca","family":"Sebastiani","sequence":"additional","affiliation":[]},{"given":"Michele","family":"Martelli","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,4,2]]},"reference":[{"key":"2_CR1","unstructured":"Shenoi, R.A., et al.: Global marine technology trends 2030 (2015)"},{"issue":"sup1","key":"2_CR2","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1080\/20464177.2019.1685836","volume":"19","author":"R Zaccone","year":"2020","unstructured":"Zaccone, R., Martelli, M.: A collision avoidance algorithm for ship guidance applications. J. Mar. Eng. Technol. 19(sup1), 62\u201375 (2020)","journal-title":"J. Mar. Eng. Technol."},{"key":"2_CR3","doi-asserted-by":"crossref","unstructured":"Son, N.-S., Kim, S.-Y.: On the sea trial test for the validation of an autonomous collision avoidance system of unmanned surface vehicle, ARAGON. In: OCEANS 2018 MTS\/IEEE Charleston. IEEE (2018)","DOI":"10.1109\/OCEANS.2018.8604803"},{"key":"2_CR4","unstructured":"Thombre, S., et al.: Sensors and AI techniques for situational awareness in autonomous ships: a review. IEEE Trans. Intell. Transp. Syst. (2020)"},{"issue":"8","key":"2_CR5","doi-asserted-by":"publisher","first-page":"3412","DOI":"10.1109\/TNNLS.2020.3015992","volume":"32","author":"Y Li","year":"2020","unstructured":"Li, Y., et al.: Deep learning for LiDAR point clouds in autonomous driving: a review. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3412\u20133432 (2020)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"11","key":"2_CR6","doi-asserted-by":"publisher","first-page":"1231","DOI":"10.1177\/0278364913491297","volume":"32","author":"A Geiger","year":"2013","unstructured":"Geiger, A., et al.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231\u20131237 (2013)","journal-title":"Int. J. Robot. Res."},{"issue":"10","key":"2_CR7","doi-asserted-by":"publisher","first-page":"2702","DOI":"10.1109\/TPAMI.2019.2926463","volume":"42","author":"X Huang","year":"2020","unstructured":"Huang, X., et al.: The apolloscape open dataset for autonomous driving and its application. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2702\u20132719 (2020)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"9","key":"2_CR8","doi-asserted-by":"publisher","first-page":"4224","DOI":"10.1109\/TII.2018.2822828","volume":"14","author":"H Gao","year":"2018","unstructured":"Gao, H., Cheng, B., Wang, J., Li, K., Zhao, J., Li, D.: Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Trans. Industr. Inf. 14(9), 4224\u20134231 (2018)","journal-title":"IEEE Trans. Industr. Inf."},{"key":"2_CR9","doi-asserted-by":"crossref","unstructured":"Wu, B., et al.: Squeezeseg: convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2018)","DOI":"10.1109\/ICRA.2018.8462926"},{"key":"2_CR10","doi-asserted-by":"crossref","unstructured":"Wu, B., et al.: Squeezesegv2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE (2019)","DOI":"10.1109\/ICRA.2019.8793495"},{"key":"2_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-030-58604-1_1","volume-title":"Computer Vision \u2013 ECCV 2020","author":"C Xu","year":"2020","unstructured":"Xu, C., et al.: Squeezesegv3: spatially-adaptive convolution for efficient point-cloud segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1\u201319. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58604-1_1"},{"key":"2_CR12","unstructured":"AUV Lab, MIT Sea Grant Marine Perception Dataset. https:\/\/seagrant.mit.edu\/auvlab-datasets-marine-perception-1\/"},{"issue":"3","key":"2_CR13","doi-asserted-by":"publisher","first-page":"786","DOI":"10.1109\/JOE.2019.2909507","volume":"45","author":"J Muhovic","year":"2020","unstructured":"Muhovic, J., Mandeljc, R., Bovcon, B., Kristan, M., Pers, J.: Obstacle tracking for unmanned surface vessels using 3-D point cloud. IEEE J. Oceanic Eng. 45(3), 786\u2013798 (2020)","journal-title":"IEEE J. Oceanic Eng."},{"key":"2_CR14","doi-asserted-by":"crossref","unstructured":"Sorial, M., et al.: Towards a real time obstacle detection system for unmanned surface vehicles. In: OCEANS 2019 MTS\/IEEE SEATTLE. IEEE (2019)","DOI":"10.23919\/OCEANS40490.2019.8962685"},{"issue":"4","key":"2_CR15","doi-asserted-by":"publisher","first-page":"1812","DOI":"10.1109\/TMECH.2020.2997970","volume":"25","author":"J Villa","year":"2020","unstructured":"Villa, J., Aaltonen, J., Koskinen, K.T.: Path-following with lidar-based obstacle avoidance of an unmanned surface vehicle in harbor conditions. IEEE\/ASME Trans. Mechatron. 25(4), 1812\u20131820 (2020)","journal-title":"IEEE\/ASME Trans. Mechatron."},{"key":"2_CR16","doi-asserted-by":"crossref","unstructured":"Martelli, M., Faggioni, N., Zaccone, R.: Development of a navigation support system by means of a synthetic scenario. In: Sustainable Development and Innovations in Marine Technologies, pp. 481\u2013487. CRC Press (2019)","DOI":"10.1201\/9780367810085-64"},{"key":"2_CR17","unstructured":"Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96. no. 34 (1996)"},{"key":"2_CR18","doi-asserted-by":"publisher","first-page":"983","DOI":"10.1016\/j.patcog.2016.07.007","volume":"60","author":"Y Zhu","year":"2016","unstructured":"Zhu, Y., Ting, K.M., Carman, M.J.: Density-ratio based clustering for discovering clusters with varying densities. Pattern Recogn. 60, 983\u2013997 (2016)","journal-title":"Pattern Recogn."},{"key":"2_CR19","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1007\/978-3-540-73499-4_15","volume-title":"Machine Learning and Data Mining in Pattern Recognition","author":"X Hu","year":"2007","unstructured":"Hu, X., Wang, D., Wu, X.: Varying density spatial clustering based on a hierarchical tree. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 188\u2013202. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-73499-4_15"},{"key":"2_CR20","doi-asserted-by":"crossref","unstructured":"Jolliffe, I.: Principal component analysis. In: Encyclopedia of Statistics in Behavioral Science (2005)","DOI":"10.1002\/0470013192.bsa501"},{"issue":"4","key":"2_CR21","doi-asserted-by":"publisher","first-page":"3516","DOI":"10.4249\/scholarpedia.3516","volume":"8","author":"T Poggio","year":"2013","unstructured":"Poggio, T., Serre, T.: Models of visual cortex. Scholarpedia 8(4), 3516 (2013)","journal-title":"Scholarpedia"},{"key":"2_CR22","unstructured":"ImageNet. https:\/\/image-net.org\/challenges\/LSVRC\/. Accessed 2 July 2021"},{"key":"2_CR23","unstructured":"Alom, M.Z., et al.: The history began from alexnet: a comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164 (2018)"},{"key":"2_CR24","doi-asserted-by":"crossref","unstructured":"Redmon, J., et al.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.91"},{"key":"2_CR25","doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)","DOI":"10.1109\/CVPR.2017.690"},{"key":"2_CR26","unstructured":"Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)"},{"key":"2_CR27","unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)"}],"container-title":["Lecture Notes in Computer Science","Modelling and Simulation for Autonomous Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-98260-7_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T13:25:56Z","timestamp":1648819556000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-98260-7_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783030982591","9783030982607"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-98260-7_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"2 April 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MESAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Modelling and Simulation for Autonomous Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mesas2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.mscoe.org\/event\/mesas-2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"50","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"60% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}