{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T16:17:56Z","timestamp":1726157876241},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030975456"},{"type":"electronic","value":"9783030975463"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-97546-3_56","type":"book-chapter","created":{"date-parts":[[2022,3,18]],"date-time":"2022-03-18T04:41:28Z","timestamp":1647578488000},"page":"691-702","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Improving Evolutionary Generative Adversarial Networks"],"prefix":"10.1007","author":[{"given":"Zheping","family":"Liu","sequence":"first","affiliation":[]},{"given":"Nasser","family":"Sabar","sequence":"additional","affiliation":[]},{"given":"Andy","family":"Song","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,3,19]]},"reference":[{"key":"56_CR1","unstructured":"Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862 (2017)"},{"key":"56_CR2","unstructured":"Arora, S., Zhang, Y.: Do GANs actually learn the distribution? An empirical study. arXiv: abs\/1706.08224 (2017)"},{"issue":"1","key":"56_CR3","doi-asserted-by":"publisher","first-page":"8","DOI":"10.15837\/ijccc.2011.1.2196","volume":"6","author":"D Arotaritei","year":"2011","unstructured":"Arotaritei, D.: Genetic algorithm for fuzzy neural networks using locally crossover. Int. J. Comput. Commun. Control 6(1), 8\u201320 (2011)","journal-title":"Int. J. Comput. Commun. Control"},{"key":"56_CR4","doi-asserted-by":"crossref","unstructured":"Foo, Y.W., Goh, C., Lim, H.C., Zhan, Z.H., Li, Y.: Evolutionary neural network based energy consumption forecast for cloud computing. In: 2015 International Conference on Cloud Computing Research and Innovation (ICCCRI), pp. 53\u201364. IEEE (2015)","DOI":"10.1109\/ICCCRI.2015.17"},{"issue":"4","key":"56_CR5","doi-asserted-by":"publisher","first-page":"514","DOI":"10.1016\/j.neunet.2005.08.014","volume":"19","author":"N Garc\u00eda-Pedrajas","year":"2006","unstructured":"Garc\u00eda-Pedrajas, N., Ortiz-Boyer, D., Herv\u00e1s-Mart\u00ednez, C.: An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization. Neural Netw. 19(4), 514\u2013528 (2006)","journal-title":"Neural Netw."},{"key":"56_CR6","unstructured":"Goodfellow, I.J., et al.: Generative adversarial networks. arXiv: abs\/1406.2661 (2014)"},{"key":"56_CR7","unstructured":"Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)"},{"key":"56_CR8","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1016\/j.neucom.2003.11.008","volume":"61","author":"KJ Kim","year":"2004","unstructured":"Kim, K.J., Cho, S.B.: Prediction of colon cancer using an evolutionary neural network. Neurocomputing 61, 361\u2013379 (2004)","journal-title":"Neurocomputing"},{"key":"56_CR9","unstructured":"Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)"},{"key":"56_CR10","doi-asserted-by":"crossref","unstructured":"Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730\u20133738 (2015)","DOI":"10.1109\/ICCV.2015.425"},{"key":"56_CR11","unstructured":"Mo, S., Cho, M., Shin, J.: Freeze the discriminator: a simple baseline for fine-tuning GANs. arxiv 2020. arXiv preprint arXiv:2002.10964 (2020)"},{"key":"56_CR12","unstructured":"Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. arXiv preprint arXiv:1606.03498 (2016)"},{"key":"56_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1007\/3-540-54563-8_104","volume-title":"Methodologies for Intelligent Systems","author":"WM Spears","year":"1991","unstructured":"Spears, W.M., Anand, V.: A study of crossover operators in genetic programming. In: Ras, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 409\u2013418. Springer, Heidelberg (1991). https:\/\/doi.org\/10.1007\/3-540-54563-8_104"},{"key":"56_CR14","doi-asserted-by":"publisher","first-page":"921","DOI":"10.1109\/TEVC.2019.2895748","volume":"23","author":"C Wang","year":"2019","unstructured":"Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. IEEE Trans. Evol. Comput. 23, 921\u2013934 (2019)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"56_CR15","unstructured":"Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)"}],"container-title":["Lecture Notes in Computer Science","AI 2021: Advances in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-97546-3_56","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,18]],"date-time":"2022-03-18T04:50:10Z","timestamp":1647579010000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-97546-3_56"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783030975456","9783030975463"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-97546-3_56","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"19 March 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australasian Joint Conference on Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sydney, NSW","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 February 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 February 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"34","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ausai2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ajcai2021.net","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"120","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"53% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was postponed to 2022 and held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}