{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T15:53:34Z","timestamp":1726156414312},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030968779"},{"type":"electronic","value":"9783030968786"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-96878-6_1","type":"book-chapter","created":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T07:02:41Z","timestamp":1646118161000},"page":"3-14","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Segmentation and\u00a0Quantification of\u00a0Bi-Ventricles and\u00a0Myocardium Using 3D SERes-U-Net"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3754-498X","authenticated-orcid":false,"given":"Marija","family":"Habijan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0211-4568","authenticated-orcid":false,"given":"Irena","family":"Gali\u0107","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9568-1408","authenticated-orcid":false,"given":"Hrvoje","family":"Leventi\u0107","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8656-6712","authenticated-orcid":false,"given":"Kre\u0161imir","family":"Romi\u0107","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2881-6760","authenticated-orcid":false,"given":"Danilo","family":"Babin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,3,2]]},"reference":[{"key":"1_CR1","unstructured":"A.C.D.C.A.M.C.: Post-2017-miccai-challenge testing phase. https:\/\/acdc.creatis.insa-lyon.fr\/#challenges (2017)"},{"issue":"3","key":"1_CR2","doi-asserted-by":"publisher","first-page":"174","DOI":"10.1136\/heartjnl-2019-314856","volume":"106","author":"JR Arnold","year":"2020","unstructured":"Arnold, J.R., McCann, G.P.: Cardiovascular magnetic resonance: applications and practical considerations for the general cardiologist. Heart 106(3), 174\u2013181 (2020)","journal-title":"Heart"},{"key":"1_CR3","doi-asserted-by":"crossref","unstructured":"Baumgartner, C.F., Koch, L., Pollefeys, M., Konukoglu, E.: An exploration of 2d and 3d deep learning techniques for cardiac MR image segmentation. ArXiv arXiv:1709.04496 (2017)","DOI":"10.1007\/978-3-319-75541-0_12"},{"issue":"11","key":"1_CR4","doi-asserted-by":"publisher","first-page":"2514","DOI":"10.1109\/TMI.2018.2837502","volume":"37","author":"O Bernard","year":"2018","unstructured":"Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514\u20132525 (2018). https:\/\/doi.org\/10.1109\/TMI.2018.2837502","journal-title":"IEEE Trans. Med. Imaging"},{"key":"1_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1007\/978-3-319-75541-0_9","volume-title":"Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges","author":"I Cetin","year":"2018","unstructured":"Cetin, I., et al.: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 82\u201390. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-75541-0_9"},{"key":"1_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1007\/978-3-030-59719-1_11","volume-title":"Medical Image Computing and Computer Assisted Intervention","author":"F Cheng","year":"2020","unstructured":"Cheng, F., et al.: Learning directional feature maps for cardiac MRI segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 108\u2013117. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59719-1_11"},{"key":"1_CR7","doi-asserted-by":"crossref","unstructured":"Click, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: Learning dense volumetric segmentation from sparse annotation. CoRR abs\/1606.06650 (2016). http:\/\/arxiv.org\/abs\/1606.06650","DOI":"10.1007\/978-3-319-46723-8_49"},{"issue":"9","key":"1_CR8","doi-asserted-by":"publisher","first-page":"2151","DOI":"10.1109\/TMI.2019.2894322","volume":"38","author":"J Duan","year":"2019","unstructured":"Duan, J., et al.: Automatic 3d bi-ventricular segmentation of cardiac images by a shape-refined multi- task deep learning approach. IEEE Trans. Med. Imaging 38(9), 2151\u20132164 (2019)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"1_CR9","doi-asserted-by":"publisher","unstructured":"Habijan, M., Leventi\u0107, H., Gali\u0107, I., Babin, D.: Estimation of the left ventricle volume using semantic segmentation. In: 2019 International Symposium ELMAR, pp. 39\u201344 (2019). https:\/\/doi.org\/10.1109\/ELMAR.2019.8918851","DOI":"10.1109\/ELMAR.2019.8918851"},{"issue":"6","key":"1_CR10","doi-asserted-by":"publisher","first-page":"725","DOI":"10.1007\/s13239-020-00494-8","volume":"11","author":"M Habijan","year":"2020","unstructured":"Habijan, M., et al.: Overview of the whole heart and heart chamber segmentation methods. Cardiovasc. Eng. Technol. 11(6), 725\u2013747 (2020)","journal-title":"Cardiovasc. Eng. Technol."},{"key":"1_CR11","doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770\u2013778 (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"1_CR12","doi-asserted-by":"publisher","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141 (2018). https:\/\/doi.org\/10.1109\/CVPR.2018.00745","DOI":"10.1109\/CVPR.2018.00745"},{"key":"1_CR13","unstructured":"Isensee, F., Jaeger, P., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. CoRR abs\/1707.00587 (2017). http:\/\/arxiv.org\/abs\/1707.00587"},{"key":"1_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1007\/978-3-319-75541-0_17","volume-title":"Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges","author":"Y Jang","year":"2018","unstructured":"Jang, Y., Hong, Y., Ha, S., Kim, S., Chang, H.-J.: Automatic segmentation of LV and RV in cardiac MRI. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 161\u2013169. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-75541-0_17"},{"key":"1_CR15","doi-asserted-by":"crossref","unstructured":"Khened, M., Varghese, A., Krishnamurthi, G.: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: STACOM@MICCAI (2017)","DOI":"10.1007\/978-3-319-75541-0_15"},{"key":"1_CR16","doi-asserted-by":"publisher","first-page":"82153","DOI":"10.1109\/ACCESS.2020.2991424","volume":"8","author":"T Liu","year":"2020","unstructured":"Liu, T., Tian, Y., Zhao, S., Huang, X., Wang, Q.: Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis. IEEE Access 8, 82153\u201382161 (2020). https:\/\/doi.org\/10.1109\/ACCESS.2020.2991424","journal-title":"IEEE Access"},{"key":"1_CR17","doi-asserted-by":"publisher","unstructured":"Liu, Y., et al.: Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI. Magn. Reson. Imaging 34 (2015). https:\/\/doi.org\/10.1016\/j.mri.2015.12.027","DOI":"10.1016\/j.mri.2015.12.027"},{"key":"1_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"723","DOI":"10.1007\/978-3-030-32245-8_80","volume-title":"Medical Image Computing and Computer Assisted Intervention","author":"J-T Lu","year":"2019","unstructured":"Lu, J.-T., et al.: DeepAAA: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 723\u2013731. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32245-8_80"},{"key":"1_CR19","unstructured":"Organization, W.H.: Mortality database (2018). Accessed 19 Jan 2021"},{"key":"1_CR20","doi-asserted-by":"crossref","unstructured":"Patravali, J., Jain, S., Chilamkurthy, S.: 2d\u20133d fully convolutional neural networks for cardiac MR segmentation. ArXiv arXiv:1707.09813 (2017)","DOI":"10.1007\/978-3-319-75541-0_14"},{"issue":"2","key":"1_CR21","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/s10334-015-0521-4","volume":"29","author":"P Peng","year":"2016","unstructured":"Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phys. Biol. Med. 29(2), 155\u2013195 (2016). https:\/\/doi.org\/10.1007\/s10334-015-0521-4","journal-title":"Magn. Reson. Mater. Phys. Biol. Med."},{"key":"1_CR22","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs\/1505.04597 (2015). http:\/\/arxiv.org\/abs\/1505.04597"},{"key":"1_CR23","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1016\/j.media.2018.05.008","volume":"48","author":"DM Vigneault","year":"2018","unstructured":"Vigneault, D.M., Xie, W., Ho, C.Y., Bluemke, D.A., Noble, J.A.: Omega-net (omega-net): fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95\u2013106 (2018). https:\/\/doi.org\/10.1016\/j.media.2018.05.008","journal-title":"Med. Image Anal."},{"key":"1_CR24","doi-asserted-by":"crossref","unstructured":"Zotti, C., Luo, Z., Humbert, O., Lalande, A., Jodoin, P.M.: Gridnet with automatic shape prior registration for automatic MRI cardiac segmentation. In: STACOM@MICCAI (2017)","DOI":"10.1007\/978-3-319-75541-0_8"}],"container-title":["Communications in Computer and Information Science","Systems, Signals and Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-96878-6_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T07:03:04Z","timestamp":1646118184000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-96878-6_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783030968779","9783030968786"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-96878-6_1","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"2 March 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWSSIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Systems, Signals and Image Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bratislava","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Slovakia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 June 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 June 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwssip2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iwssip.stuba.sk","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"76","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"14","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.25","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.53","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}