{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:11:29Z","timestamp":1728177089887},"publisher-location":"Cham","reference-count":36,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030963071"},{"type":"electronic","value":"9783030963088"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-96308-8_116","type":"book-chapter","created":{"date-parts":[[2022,3,26]],"date-time":"2022-03-26T09:15:41Z","timestamp":1648286141000},"page":"1250-1259","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Ensemble Learning for Data-Driven Diagnosis of Polycystic Ovary Syndrome"],"prefix":"10.1007","author":[{"given":"Subrato","family":"Bharati","sequence":"first","affiliation":[]},{"given":"Prajoy","family":"Podder","sequence":"additional","affiliation":[]},{"given":"M. Rubaiyat Hossain","family":"Mondal","sequence":"additional","affiliation":[]},{"given":"V. B.","family":"Surya Prasath","sequence":"additional","affiliation":[]},{"given":"Niketa","family":"Gandhi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,3,27]]},"reference":[{"key":"116_CR1","first-page":"167","volume":"5","author":"PS Hiremath","year":"2013","unstructured":"Hiremath, P.S., Tegnoor, J.R.: Follicle detection and ovarian classification in digital ultrasound images of ovaries. Adv. Breakthroughs Ultrasound Imag. 5, 167\u2013199 (2013)","journal-title":"Adv. Breakthroughs Ultrasound Imag."},{"issue":"6","key":"116_CR2","doi-asserted-by":"publisher","first-page":"505","DOI":"10.1093\/humupd\/dmg044","volume":"9","author":"AH Balen","year":"2003","unstructured":"Balen, A.H., Laven, J.S.E., Tan, S.L., Dewailly, D.: Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum. Reprod. Update 9(6), 505\u2013514 (2003)","journal-title":"Hum. Reprod. Update"},{"issue":"2","key":"116_CR3","doi-asserted-by":"publisher","first-page":"421","DOI":"10.1148\/radiology.183.2.1561343","volume":"183","author":"TD Pache","year":"1992","unstructured":"Pache, T.D., Wladimiroff, J.W., Hop, W.C., Fauser, B.C.: How to discriminate between normal and polycystic ovaries: transvaginal US study. Radiology 183(2), 421\u2013423 (1992)","journal-title":"Radiology"},{"key":"116_CR4","doi-asserted-by":"crossref","unstructured":"Kelsey, T.W., Wallace, W.H.B.: Ovarian volume correlates strongly with the number of nongrowing follicles in the human ovary. In: Obstetrics and Gynecology International 2012 (2012)","DOI":"10.1155\/2012\/305025"},{"key":"116_CR5","series-title":"Learning and Analytics in Intelligent Systems","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1007\/978-3-030-38501-9_36","volume-title":"Intelligent Computing Paradigm and Cutting-edge Technologies","author":"N Priya","year":"2020","unstructured":"Priya, N., Jeevitha, S.: Overview of an ovarian classification and detection PCOS in ultrasound image: a study. In: Jain, L.C., Peng, S.-L., Alhadidi, B., Pal, S. (eds.) ICICCT 2019. LAIS, vol. 9, pp. 359\u2013365. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-38501-9_36"},{"issue":"4","key":"116_CR6","doi-asserted-by":"publisher","first-page":"170","DOI":"10.1007\/s41969-019-00084-7","volume":"12","author":"B Obermayer-Pietsch","year":"2019","unstructured":"Obermayer-Pietsch, B., Lerchbaum, E.: Journal f\u00fcr Klinische Endokrinologie und Stoffwechsel 12(4), 170\u2013173 (2019). https:\/\/doi.org\/10.1007\/s41969-019-00084-7","journal-title":"Journal f\u00fcr Klinische Endokrinologie und Stoffwechsel"},{"issue":"5","key":"116_CR7","doi-asserted-by":"publisher","first-page":"487","DOI":"10.1210\/er.2015-1018","volume":"36","author":"DA Dumesic","year":"2015","unstructured":"Dumesic, D.A., Oberfield, S.E., Stener-Victorin, E., Marshall, J.C., Laven, J.S., Legro, R.S.: Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev. 36(5), 487\u2013525 (2015)","journal-title":"Endocr. Rev."},{"key":"116_CR8","doi-asserted-by":"crossref","unstructured":"Cheng, J.J., Mahalingaiah, S.: Data mining and classification of polycystic ovaries in pelvic ultrasound reports. bioRxiv:254870 (2018)","DOI":"10.1101\/254870"},{"issue":"1","key":"116_CR9","first-page":"240","volume":"6","author":"B Padmapriya","year":"2016","unstructured":"Padmapriya, B., Kesavamurthy, T.: Detection of follicles in poly cystic ovarian syndrome in ultrasound images using morphological operations. J. Med. Imag. Health Inf. 6(1), 240\u2013243 (2016)","journal-title":"J. Med. Imag. Health Inf."},{"issue":"2","key":"116_CR10","first-page":"604","volume":"102","author":"M Gibson-Helm","year":"2017","unstructured":"Gibson-Helm, M., Teede, H., Dunaif, A., Dokras, A.: Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102(2), 604\u2013612 (2017)","journal-title":"J. Clin. Endocrinol. Metab."},{"key":"116_CR11","doi-asserted-by":"crossref","unstructured":"Mehrotra, P., Chatterjee, J., Chakraborty, C., Ghoshdastidar, B., Ghoshdastidar, S.: Automated screening of polycystic ovary syndrome using machine learning techniques. In: Paper Presented at the 2011 Annual IEEE India Conference, 2011 (2011)","DOI":"10.1109\/INDCON.2011.6139331"},{"key":"116_CR12","doi-asserted-by":"crossref","unstructured":"Bharati, S., Podder, P., Mondal, M.R.H.: Diagnosis of Polycystic Ovary Syndrome Using Machine Learning Algorithms. In: 2020 IEEE, pp 1486\u20131489 (2020)","DOI":"10.1109\/TENSYMP50017.2020.9230932"},{"issue":"3","key":"116_CR13","first-page":"1635","volume":"2","author":"NH Mahmood","year":"2012","unstructured":"Mahmood, N.H., Ahmmad, S.N.Z., Hashim, H., Rani, S.: Ovary ultrasound image edge detection analysis: a tutorial using MATLAB. Int. J. Eng. Res. Appl. 2(3), 1635\u20131642 (2012)","journal-title":"Int. J. Eng. Res. Appl."},{"key":"116_CR14","doi-asserted-by":"crossref","unstructured":"Vasavi, G., Jyothi, S.: Classification and detection of ovarian cysts in ultrasound Images. In: Paper presented at the 2017 International Conference on Trends in Electronics and Informatics (ICEI), 2017 (2017)","DOI":"10.1109\/ICOEI.2017.8300811"},{"key":"116_CR15","series-title":"IFMBE Proceedings","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1007\/978-3-319-19452-3_48","volume-title":"7th WACBE World Congress on Bioengineering 2015","author":"B Padmapriya","year":"2015","unstructured":"Padmapriya, B., Kesavamurthy, T.: Diagnostic tool for PCOS classification. In: Goh, J., Lim, C.T. (eds.) 7th WACBE World Congress on Bioengineering 2015. IP, vol. 52, pp. 182\u2013185. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-19452-3_48"},{"issue":"12","key":"116_CR16","doi-asserted-by":"publisher","first-page":"E1967","DOI":"10.1210\/jc.2013-2815","volume":"98","author":"M Brower","year":"2013","unstructured":"Brower, M., Brennan, K., Pall, M., Azziz, R.: The severity of menstrual dysfunction as a predictor of insulin resistance in PCOS. J. Clin. Endocrinol. Metab. 98(12), E1967\u2013E1971 (2013)","journal-title":"J. Clin. Endocrinol. Metab."},{"issue":"3","key":"116_CR17","doi-asserted-by":"publisher","first-page":"334","DOI":"10.1093\/humupd\/dmt061","volume":"20","author":"D Dewailly","year":"2014","unstructured":"Dewailly, D., et al.: Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update 20(3), 334\u2013352 (2014)","journal-title":"Hum. Reprod. Update"},{"issue":"8","key":"116_CR18","first-page":"185","volume":"2","author":"A Raj","year":"2013","unstructured":"Raj, A.: Detection of cysts in ultrasonic images of ovary. Int. J. Sci. Res. (IJSR) 2(8), 185\u2013189 (2013)","journal-title":"Int. J. Sci. Res. (IJSR)"},{"key":"116_CR19","doi-asserted-by":"publisher","first-page":"012005","DOI":"10.1088\/1742-6596\/971\/1\/012005","volume":"971","author":"RM Dewi","year":"2018","unstructured":"Dewi, R.M., Adiwijaya, U.N., Wisesty, J.: Classification of polycystic ovary based on ultrasound images using competitive neural network. J. Phys. Conf. Ser. 971, 012005 (2018). https:\/\/doi.org\/10.1088\/1742-6596\/971\/1\/012005","journal-title":"J. Phys. Conf. Ser."},{"key":"116_CR20","first-page":"125","volume":"12","author":"S Bharati","year":"2020","unstructured":"Bharati, S., Podder, P., Mondal, M.R.H.: Artificial neural network based breast cancer screening: a comprehensive review. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 12, 125\u2013137 (2020)","journal-title":"Int. J. Comput. Inf. Syst. Ind. Manage. Appl."},{"key":"116_CR21","doi-asserted-by":"publisher","first-page":"71","DOI":"10.3233\/HIS-210008","volume":"17","author":"S Bharati","year":"2021","unstructured":"Bharati, S., Podder, P., Mondal, M., Prasath, V.B.: CO-ResNet: optimized ResNet model for COVID-19 diagnosis from X-ray images. Int. J. Hybrid Intell. Syst. 17, 71\u201385 (2021). https:\/\/doi.org\/10.3233\/HIS-210008","journal-title":"Int. J. Hybrid Intell. Syst."},{"key":"116_CR22","first-page":"91","volume":"13","author":"S Bharati","year":"2021","unstructured":"Bharati, S., Podder, P., Mondal, M., Prasath, V.B.: Medical imaging with deep learning for COVID-19 diagnosis: a comprehensive review. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 13, 91\u2013112 (2021)","journal-title":"Int. J. Comput. Inf. Syst. Ind. Manage. Appl."},{"key":"116_CR23","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"647","DOI":"10.1007\/978-3-030-71187-0_59","volume-title":"Intelligent Systems Design and Applications","author":"S Bharati","year":"2021","unstructured":"Bharati, S., Prajoy Podder, M., Mondal, R.H., Gandhi, N.: Optimized NASNet for diagnosis of COVID-19 from lung CT images. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds.) ISDA 2020. AISC, vol. 1351, pp. 647\u2013656. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-71187-0_59"},{"key":"116_CR24","doi-asserted-by":"publisher","first-page":"100391","DOI":"10.1016\/j.imu.2020.100391","volume":"20","author":"S Bharati","year":"2020","unstructured":"Bharati, S., Prajoy Podder, M., Mondal, R.H.: Hybrid deep learning for detecting lung diseases from X-ray images. Inf. Med. Unlocked 20, 100391 (2020)","journal-title":"Inf. Med. Unlocked"},{"issue":"2","key":"116_CR25","doi-asserted-by":"publisher","first-page":"257","DOI":"10.4103\/ijem.IJEM_637_18","volume":"23","author":"G Sachdeva","year":"2019","unstructured":"Sachdeva, G., Gainder, S., Suri, V., Sachdeva, N., Chopra, S.: Obese and non-obese polycystic ovarian syndrome: comparison of clinical, metabolic, hormonal parameters, and their differential response to clomiphene. Indian J. Endocrinol. Metabol. 23(2), 257 (2019)","journal-title":"Indian J. Endocrinol. Metabol."},{"issue":"10","key":"116_CR26","doi-asserted-by":"publisher","first-page":"e0259179","DOI":"10.1371\/journal.pone.0259179","volume":"16","author":"MRH Mondal","year":"2021","unstructured":"Mondal, M.R.H., Bharati, S., Podder, P.: CO-IRv2: Optimized InceptionResNetV2 for COVID-19 detection from chest CT images. PLoS ONE 16(10), e0259179 (2021)","journal-title":"PLoS ONE"},{"issue":"1","key":"116_CR27","first-page":"1","volume":"8","author":"X-Z Zhang","year":"2018","unstructured":"Zhang, X.-Z., Pang, Y.-L., Wang, X., Li, Y.-H.: Computational characterization and identification of human polycystic ovary syndrome genes. Sci. Rep. 8(1), 1\u20137 (2018)","journal-title":"Sci. Rep."},{"key":"116_CR28","doi-asserted-by":"crossref","unstructured":"Denny, A., Raj, A., Ashok, A., Ram, C.M.: George R I-HOPE: detection and prediction system for polycystic ovary syndrome (PCOS) using machine learning techniques. In: TENCON 2019\u20132019 IEEE Region 10 Conference (TENCON), 2019, pp 673\u2013678. IEEE (2019)","DOI":"10.1109\/TENCON.2019.8929674"},{"issue":"4","key":"116_CR29","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1089\/jwh.2014.5000","volume":"24","author":"AE Joham","year":"2015","unstructured":"Joham, A.E., Teede, H.J., Ranasinha, S., Zoungas, S., Boyle, J.: Prevalence of infertility and use of fertility treatment in women with polycystic ovary syndrome: data from a large community-based cohort study. J. Womens Health 24(4), 299\u2013307 (2015)","journal-title":"J. Womens Health"},{"key":"116_CR30","unstructured":"Kottarathil, P.: Polycystic ovary syndrome (PCOS). https:\/\/www.kaggle.com\/prasoonkottarathil\/polycystic-ovary-syndrome-pcos. Accessed 18 Nov 2021"},{"key":"116_CR31","doi-asserted-by":"crossref","unstructured":"Podder, P., Khamparia, A., Mondal, M.R.H., Rahman, M.A., Bharati, S.: Forecasting the Spread of COVID-19 and ICU Requirements. Int. J, Online Biomed. Eng. (iJOE) 5, 81\u201399 (2021)","DOI":"10.20944\/preprints202103.0447.v1"},{"key":"116_CR32","doi-asserted-by":"crossref","unstructured":"Mondal, M.R.H., Bharati, S., Podder, P.: Diagnosis of COVID-19 using machine learning and deep learning: a review. In: Current Medical Imaging (2021)","DOI":"10.2174\/1573405617666210713113439"},{"issue":"2","key":"116_CR33","doi-asserted-by":"publisher","first-page":"e0228422","DOI":"10.1371\/journal.pone.0228422","volume":"15","author":"M Raihan-Al-Masud","year":"2020","unstructured":"Raihan-Al-Masud, M., Mondal, M.R.H.: Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms. PLoS ONE 15(2), e0228422 (2020)","journal-title":"PLoS ONE"},{"key":"116_CR34","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1016\/B978-0-12-824536-1.00008-3","volume-title":"Data Science for COVID-19","author":"P Podder","year":"2021","unstructured":"Podder, P., Subrato Bharati, M., Mondal, R.H., Kose, U.: Application of machine learning for the diagnosis of COVID-19. In: Data Science for COVID-19, pp. 175\u2013194. Elsevier (2021). https:\/\/doi.org\/10.1016\/B978-0-12-824536-1.00008-3"},{"key":"116_CR35","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1515\/9783110668322-010","volume-title":"Artificial Intelligence for Data-Driven Medical Diagnosis","author":"P Podder","year":"2021","unstructured":"Podder, P., Subrato Bharati, M., Mondal, R.H.: 10 Automated gastric cancer detection and classification using machine learning. In: Gupta, D., Kose, U., Le Nguyen, B., Bhattacharyya, S. (eds.) Artificial Intelligence for Data-Driven Medical Diagnosis, pp. 207\u2013224. De Gruyter (2021). https:\/\/doi.org\/10.1515\/9783110668322-010"},{"key":"116_CR36","doi-asserted-by":"publisher","first-page":"100374","DOI":"10.1016\/j.imu.2020.100374","volume":"20","author":"MRH Mondal","year":"2020","unstructured":"Mondal, M.R.H., Bharati, S., Podder, P., Podder, P.: Data analytics for novel coronavirus disease. Inf. Med. Unlocked 20, 100374 (2020)","journal-title":"Inf. Med. Unlocked"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Systems Design and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-96308-8_116","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,26]],"date-time":"2022-03-26T09:29:18Z","timestamp":1648286958000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-96308-8_116"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783030963071","9783030963088"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-96308-8_116","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"27 March 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ISDA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Systems Design and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 December 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 December 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"isda2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.mirlabs.net\/isda21\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}