{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T15:46:21Z","timestamp":1726155981885},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030963040"},{"type":"electronic","value":"9783030963057"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-96305-7_35","type":"book-chapter","created":{"date-parts":[[2022,3,3]],"date-time":"2022-03-03T06:06:50Z","timestamp":1646287610000},"page":"376-385","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Alzheimer\u2019s Disease Detection Using Deep ECA-ResNet101 Network with\u00a0DCGAN"],"prefix":"10.1007","author":[{"given":"Rahma","family":"Kadri","sequence":"first","affiliation":[]},{"given":"Mohamed","family":"Tmar","sequence":"additional","affiliation":[]},{"given":"Bassem","family":"Bouaziz","sequence":"additional","affiliation":[]},{"given":"Faiez","family":"Gargouri","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,3,4]]},"reference":[{"key":"35_CR1","doi-asserted-by":"publisher","unstructured":"Ahmed, S., Kim, B.C., Lee, K.H., Jung, H.Y.: Ensemble of ROI-based convolutional neural network classifiers for staging the Alzheimer disease spectrum from magnetic resonance imaging. PLOS ONE 15(12), e0242712 (2020). https:\/\/doi.org\/10.1371\/journal.pone.0242712","DOI":"10.1371\/journal.pone.0242712"},{"key":"35_CR2","doi-asserted-by":"publisher","unstructured":"Baydargil, H.B., Park, J.S., Kang, D.Y.: Classification of Alzheimer\u2019s disease using stacked sparse convolutional autoencoder. In: 2019 19th International Conference on Control, Automation and Systems (ICCAS). IEEE (2019). https:\/\/doi.org\/10.23919\/iccas47443.2019.8971696","DOI":"10.23919\/iccas47443.2019.8971696"},{"key":"35_CR3","doi-asserted-by":"publisher","unstructured":"Feng, W.: Automated MRI-based deep learning model for detection of Alzheimer\u2019s disease process. Int. J. Neural Syst. 30(06), 2050032 (2020). https:\/\/doi.org\/10.1142\/s012906572050032x","DOI":"10.1142\/s012906572050032x"},{"key":"35_CR4","doi-asserted-by":"publisher","unstructured":"Hedayati, R., Khedmati, M., Taghipour-Gorjikolaie, M.: Deep feature extraction method based on ensemble of convolutional auto encoders: application to Alzheimer\u2019s disease diagnosis. Biomed. Signal Process. Control 66, 102397 (2021). https:\/\/doi.org\/10.1016\/j.bspc.2020.102397","DOI":"10.1016\/j.bspc.2020.102397"},{"key":"35_CR5","doi-asserted-by":"publisher","unstructured":"Huang, Z., Sun, M., Guo, C.: Automatic diagnosis of Alzheimer\u2019s disease and mild cognitive impairment based on CNN SVM networks with end-to-end training, pp. 1\u201313 (2021). https:\/\/doi.org\/10.1155\/2021\/9121770","DOI":"10.1155\/2021\/9121770"},{"key":"35_CR6","doi-asserted-by":"publisher","unstructured":"Jo, T., , Nho, K., Risacher, S.L., Saykin, A.J.: Deep learning detection of informative features in tau PET for Alzheimer\u2019s disease classification. BMC Bioinf. 21(S21) (2020). https:\/\/doi.org\/10.1186\/s12859-020-03848-0","DOI":"10.1186\/s12859-020-03848-0"},{"key":"35_CR7","doi-asserted-by":"publisher","unstructured":"Katabathula, S., Wang, Q., Xu, R.: Predict Alzheimer\u2019s disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations. Alzheimer\u2019s Res. Therapy 13(1) (2021). https:\/\/doi.org\/10.1186\/s13195-021-00837-0","DOI":"10.1186\/s13195-021-00837-0"},{"key":"35_CR8","doi-asserted-by":"publisher","unstructured":"Kim, S., et al.: Deep learning-based amyloid PET positivity classification model in the Alzheimer\u2019s disease continuum by using 2-[18f]FDG PET. EJNMMI Res. 11(1) (2021). https:\/\/doi.org\/10.1186\/s13550-021-00798-3","DOI":"10.1186\/s13550-021-00798-3"},{"key":"35_CR9","doi-asserted-by":"publisher","unstructured":"Liang, S., Gu, Y.: Computer-aided diagnosis of Alzheimer\u2019s disease through weak supervision deep learning framework with attention mechanism. Sensors 21(1), 220 (2020). https:\/\/doi.org\/10.3390\/s21010220","DOI":"10.3390\/s21010220"},{"key":"35_CR10","doi-asserted-by":"publisher","unstructured":"Liu, J., Li, M., Luo, Y., Yang, S., Li, W., Bi, Y.: Alzheimer\u2019s disease detection using depthwise separable convolutional neural networks. Comput. Methods Prog. Biomed. 203, 106032 (2021). https:\/\/doi.org\/10.1016\/j.cmpb.2021.106032","DOI":"10.1016\/j.cmpb.2021.106032"},{"key":"35_CR11","doi-asserted-by":"publisher","unstructured":"Marzban, E.N., Eldeib, A.M., Yassine, I.A., Kadah, Y.M.: Alzheimer\u2019s disease diagnosis from diffusion tensor images using convolutional neural networks. PLOS ONE 15(3), e0230409 (2020). https:\/\/doi.org\/10.1371\/journal.pone.0230409","DOI":"10.1371\/journal.pone.0230409"},{"key":"35_CR12","doi-asserted-by":"publisher","unstructured":"Qu, Y., et al.: AI4ad: artificial intelligence analysis for Alzheimer\u2019s disease classification based on a multisite DTI database. Brain Disord. 1 (2021). https:\/\/doi.org\/10.1016\/j.dscb.2021.100005","DOI":"10.1016\/j.dscb.2021.100005"},{"key":"35_CR13","doi-asserted-by":"publisher","unstructured":"Sun, H., Wang, A., Wang, W., Liu, C.: An improved deep residual network prediction model for the early diagnosis of Alzheimer\u2019s disease. Sensors 21(12), 4182 (2021). https:\/\/doi.org\/10.3390\/s21124182","DOI":"10.3390\/s21124182"},{"key":"35_CR14","doi-asserted-by":"publisher","unstructured":"Ullanat, V., Balamurali, V., Rao, A.: A novel residual 3-D convolutional network for Alzheimer\u2019s disease diagnosis based on raw MRI scans. IEEE (2021). https:\/\/doi.org\/10.1109\/iecbes48179.2021.9398800","DOI":"10.1109\/iecbes48179.2021.9398800"},{"key":"35_CR15","doi-asserted-by":"publisher","unstructured":"Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-net: efficient channel attention for deep convolutional neural networks. IEEE (2020). https:\/\/doi.org\/10.1109\/cvpr42600.2020.01155","DOI":"10.1109\/cvpr42600.2020.01155"}],"container-title":["Lecture Notes in Networks and Systems","Hybrid Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-96305-7_35","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,3]],"date-time":"2022-03-03T06:10:40Z","timestamp":1646287840000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-96305-7_35"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783030963040","9783030963057"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-96305-7_35","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"4 March 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 December 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 December 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"his2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.mirlabs.net\/his21\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}