{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T14:45:09Z","timestamp":1726152309846},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030945824"},{"type":"electronic","value":"9783030945831"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-94583-1_14","type":"book-chapter","created":{"date-parts":[[2022,1,13]],"date-time":"2022-01-13T22:02:34Z","timestamp":1642111354000},"page":"285-300","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Bisimulations for\u00a0Neural Network Reduction"],"prefix":"10.1007","author":[{"given":"Pavithra","family":"Prabhakar","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,14]]},"reference":[{"key":"14_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1007\/978-3-030-59152-6_5","volume-title":"Automated Technology for Verification and Analysis","author":"P Ashok","year":"2020","unstructured":"Ashok, P., Hashemi, V., K\u0159et\u00ednsk\u00fd, J., Mohr, S.: DeepAbstract: neural network abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 92\u2013107. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59152-6_5"},{"key":"14_CR2","series-title":"Representation and Mind Series","volume-title":"Principles of Model Checking","author":"C Baier","year":"2008","unstructured":"Baier, C., Katoen, J.P.: Principles of Model Checking. Representation and Mind Series, The MIT Press, Cambridge (2008)"},{"key":"14_CR3","unstructured":"Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Piecewise linear neural network verification: a comparative study. CoRR (2017)"},{"key":"14_CR4","unstructured":"Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and acceleration for deep neural networks. CoRR (2017)"},{"issue":"4","key":"14_CR5","doi-asserted-by":"publisher","first-page":"485","DOI":"10.1109\/JPROC.2020.2976475","volume":"108","author":"L Deng","year":"2020","unstructured":"Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware acceleration for neural networks: a comprehensive survey. Proc. IEEE 108(4), 485\u2013532 (2020)","journal-title":"Proc. IEEE"},{"key":"14_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1007\/978-3-319-77935-5_9","volume-title":"NASA Formal Methods","author":"S Dutta","year":"2018","unstructured":"Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: Dutle, A., Mu\u00f1oz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 121\u2013138. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-77935-5_9"},{"key":"14_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1007\/978-3-030-53288-8_3","volume-title":"Computer Aided Verification","author":"YY Elboher","year":"2020","unstructured":"Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 43\u201365. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-53288-8_3"},{"issue":"2","key":"14_CR8","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1007\/s10626-007-0029-9","volume":"18","author":"A Girard","year":"2008","unstructured":"Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid systems. Discret. Event Dyn. Syst. 18(2), 163\u2013179 (2008)","journal-title":"Discret. Event Dyn. Syst."},{"issue":"8","key":"14_CR9","doi-asserted-by":"publisher","first-page":"1307","DOI":"10.1016\/j.automatica.2007.01.019","volume":"43","author":"A Girard","year":"2007","unstructured":"Girard, A., Pappas, G.J.: Approximate bisimulation relations for constrained linear systems. Automatica 43(8), 1307\u20131317 (2007)","journal-title":"Automatica"},{"key":"14_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1007\/978-3-540-78929-1_15","volume-title":"Hybrid Systems: Computation and Control","author":"A Girard","year":"2008","unstructured":"Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for incrementally stable switched systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 201\u2013214. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-78929-1_15"},{"key":"14_CR11","unstructured":"Huang, X., et al.: Safety and trustworthiness of deep neural networks: a survey. CoRR abs\/1812.08342 (2018)"},{"key":"14_CR12","doi-asserted-by":"crossref","unstructured":"Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. CoRR (2017)","DOI":"10.1007\/978-3-319-63387-9_5"},{"issue":"1","key":"14_CR13","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/0890-5401(91)90030-6","volume":"94","author":"KG Larsen","year":"1991","unstructured":"Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1\u201328 (1991)","journal-title":"Inf. Comput."},{"key":"14_CR14","volume-title":"Communication and Concurrency","author":"R Milner","year":"1989","unstructured":"Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Hoboken (1989)"},{"key":"14_CR15","unstructured":"Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural networks (2019)"},{"key":"14_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/978-3-642-14295-6_24","volume-title":"Computer Aided Verification","author":"L Pulina","year":"2010","unstructured":"Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 243\u2013257. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-14295-6_24"},{"key":"14_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1007\/978-3-030-65474-0_4","volume-title":"Static Analysis","author":"M Sotoudeh","year":"2020","unstructured":"Sotoudeh, M., Thakur, A.V.: Abstract neural networks. In: Pichardie, D., Sighireanu, M. (eds.) SAS 2020. LNCS, vol. 12389, pp. 65\u201388. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-65474-0_4"},{"key":"14_CR18","unstructured":"Virmaux, A., Scaman, K.: Lipschitz regularity of deep neural networks: analysis and efficient estimation. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 3835\u20133844. Curran Associates, Inc. (2018)"},{"key":"14_CR19","unstructured":"Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks survey. CoRR abs\/1810.01989 (2018)"},{"key":"14_CR20","unstructured":"Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verification for multi-layer neural networks. CoRR abs\/1708.03322 (2017)"}],"container-title":["Lecture Notes in Computer Science","Verification, Model Checking, and Abstract Interpretation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-94583-1_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,14]],"date-time":"2022-01-14T00:05:51Z","timestamp":1642118751000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-94583-1_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783030945824","9783030945831"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-94583-1_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"14 January 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"VMCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Verification, Model Checking, and Abstract Interpretation","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Philadelphia, PA","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 January 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 January 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"vmcai2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/popl22.sigplan.org\/home\/VMCAI-2022","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"63","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"23","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}