{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T14:32:49Z","timestamp":1726151569679},"publisher-location":"Cham","reference-count":67,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030944360"},{"type":"electronic","value":"9783030944377"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-94437-7_7","type":"book-chapter","created":{"date-parts":[[2022,1,14]],"date-time":"2022-01-14T08:02:40Z","timestamp":1642147360000},"page":"98-118","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["A Survey of\u00a0Big Data, High Performance Computing, and\u00a0Machine Learning Benchmarks"],"prefix":"10.1007","author":[{"given":"Nina","family":"Ihde","sequence":"first","affiliation":[]},{"given":"Paula","family":"Marten","sequence":"additional","affiliation":[]},{"given":"Ahmed","family":"Eleliemy","sequence":"additional","affiliation":[]},{"given":"Gabrielle","family":"Poerwawinata","sequence":"additional","affiliation":[]},{"given":"Pedro","family":"Silva","sequence":"additional","affiliation":[]},{"given":"Ilin","family":"Tolovski","sequence":"additional","affiliation":[]},{"given":"Florina M.","family":"Ciorba","sequence":"additional","affiliation":[]},{"given":"Tilmann","family":"Rabl","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,14]]},"reference":[{"key":"7_CR1","unstructured":"Computer architecture is back - the Berkeley view on the parallel computing landscape. https:\/\/web.stanford.edu\/class\/ee380\/Abstracts\/070131-BerkeleyView1.7.pdf. Accessed 18 Aug 2021"},{"key":"7_CR2","unstructured":"Coral procurement benchmarks. https:\/\/asc.llnl.gov\/sites\/asc\/files\/2020-06\/CORALBenchmarksProcedure-v26.pdf. Accessed 30 June 2021"},{"key":"7_CR3","unstructured":"High performance conjugate gradient benchmark (HPCG). https:\/\/github.com\/hpcg-benchmark\/hpcg\/. Accessed 04 July 2021"},{"key":"7_CR4","unstructured":"High performance conjugate gradient benchmark (HPCG). http:\/\/www.netlib.org\/benchmark\/hpl\/. Accessed 04 July 2021"},{"key":"7_CR5","unstructured":"HPCG benchmark. https:\/\/icl.bitbucket.io\/hpl-ai\/. Accessed 06 July 2021"},{"key":"7_CR6","unstructured":"Parallel graph analytix (PGX). https:\/\/www.oracle.com\/middleware\/technologies\/parallel-graph-analytix.html. Accessed 01 July 2021"},{"key":"7_CR7","unstructured":"SPEC ACCEL: Read me first. https:\/\/www.spec.org\/accel\/docs\/readme1st.html#Q13. Accessed 29 June 2021"},{"key":"7_CR8","unstructured":"SPEC OMP 2012. https:\/\/www.spec.org\/omp2012\/. Accessed 07 July 2021"},{"key":"7_CR9","unstructured":"SPECMPI. https:\/\/www.spec.org\/mpi2007\/. Accessed 07 July 2021"},{"key":"7_CR10","unstructured":"Standard performance evaluation corporation, SPEC CPU (2017). https:\/\/www.spec.org\/cpu2017\/Docs\/overview.html#suites. Accessed 29 June 2021"},{"key":"7_CR11","unstructured":"Unified European applications benchmark suite. https:\/\/repository.prace-ri.eu\/git\/UEABS\/ueabs. Accessed 29 June 2021"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D.: Fathom: reference workloads for modern deep learning methods. In: 2016 IEEE International Symposium on Workload Characterization (IISWC), pp. 1\u201310. IEEE (2016)","DOI":"10.1109\/IISWC.2016.7581275"},{"issue":"10","key":"7_CR13","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1145\/1562764.1562783","volume":"52","author":"K Asanovic","year":"2009","unstructured":"Asanovic, K., et al.: A view of the parallel computing landscape. Commun. ACM 52(10), 56\u201367 (2009)","journal-title":"Commun. ACM"},{"key":"7_CR14","unstructured":"Bailey, D., et al.: The NAS parallel benchmarks. Technical report, RNR-94-007, NASA Ames Research Center, Moffett Field, CA, March 1994 (1994)"},{"key":"7_CR15","unstructured":"Bailey, D., Harris, T., Saphir, W., van der Wijngaart, R., Woo, A., Yarrow, M.: The NAS parallel benchmarks 2.0. Technical report, RNR-95-020, NASA Ames Research Center, Moffett Field, CA, March 1995 (1995)"},{"key":"7_CR16","doi-asserted-by":"publisher","unstructured":"Bajaber, F., Sakr, S., Batarfi, O., Altalhi, A., Barnawi, A.: Benchmarking big data systems: a survey. Comput. Commun. 149, 241\u2013251 (2020). https:\/\/doi.org\/10.1016\/j.comcom.2019.10.002. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0140366419312344","DOI":"10.1016\/j.comcom.2019.10.002"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Barata, M., Bernardino, J., Furtado, P.: YCSB and TPC-H: big data and decision support benchmarks. In: 2014 IEEE International Congress on Big Data, pp. 800\u2013801. IEEE (2014)","DOI":"10.1109\/BigData.Congress.2014.128"},{"key":"7_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1007\/978-3-319-15350-6_4","volume-title":"Performance Characterization and Benchmarking. Traditional to Big Data","author":"C Baru","year":"2015","unstructured":"Baru, C., et al.: Discussion of BigBench: a proposed industry standard performance benchmark for big data. In: Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 44\u201363. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-15350-6_4"},{"key":"7_CR19","doi-asserted-by":"crossref","unstructured":"Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: characterization and architectural implications. In: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques, pp. 72\u201381 (2008)","DOI":"10.1145\/1454115.1454128"},{"key":"7_CR20","unstructured":"Bonawitz, K., et al.: Towards federated learning at scale: system design. arXiv preprint arXiv:1902.01046 (2019)"},{"key":"7_CR21","series-title":"Data-Centric Systems and Applications","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1007\/978-3-319-96193-4_6","volume-title":"Graph Data Management","author":"A Bonifati","year":"2018","unstructured":"Bonifati, A., Fletcher, G., Hidders, J., Iosup, A.: A survey of benchmarks for graph-processing systems. In: Fletcher, G., Hidders, J., Larriba-Pey, J. (eds.) Graph Data Management. DSA, pp. 163\u2013186. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-96193-4_6"},{"key":"7_CR22","doi-asserted-by":"publisher","unstructured":"Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1), 107\u2013117 (1998). https:\/\/doi.org\/10.1016\/S0169-7552(98)00110-X. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S016975529800110X. Proceedings of the Seventh International World Wide Web Conference","DOI":"10.1016\/S0169-7552(98)00110-X"},{"issue":"1\u20137","key":"7_CR23","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/S0169-7552(98)00110-X","volume":"30","author":"S Brin","year":"1998","unstructured":"Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1\u20137), 107\u2013117 (1998)","journal-title":"Comput. Netw. ISDN Syst."},{"key":"7_CR24","unstructured":"Caldas, S., et al.: Leaf: a benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018)"},{"key":"7_CR25","doi-asserted-by":"crossref","unstructured":"Capot\u0103, M., Hegeman, T., Iosup, A., Prat-P\u00e9rez, A., Erling, O., Boncz, P.: Graphalytics: a big data benchmark for graph-processing platforms. In: Proceedings of the GRADES 2015, pp. 1\u20136 (2015)","DOI":"10.1145\/2764947.2764954"},{"key":"7_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1007\/978-3-319-69953-0_6","volume-title":"Supercomputing Frontiers","author":"P Cheng","year":"2018","unstructured":"Cheng, P., Lu, Y., Du, Y., Chen, Z.: Experiences of converging big data analytics frameworks with high performance computing systems. In: Yokota, R., Wu, W. (eds.) SCFA 2018. LNCS, vol. 10776, pp. 90\u2013106. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-69953-0_6"},{"key":"7_CR27","doi-asserted-by":"crossref","unstructured":"Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 143\u2013154 (2010)","DOI":"10.1145\/1807128.1807152"},{"key":"7_CR28","doi-asserted-by":"publisher","unstructured":"Czarnul, P., Proficz, J., Krzywaniak, A., Weglarz, J.: Energy-aware high-performance computing: survey of state-of-the-art tools, techniques, and environments. Sci. Program. 2019 (2019). https:\/\/doi.org\/10.1155\/2019\/8348791","DOI":"10.1155\/2019\/8348791"},{"key":"7_CR29","unstructured":"Dongarra, J., Luszczek, P., Heroux, M.: HPCG technical specification. Sandia National Laboratories, Sandia Report SAND2013-8752 (2013)"},{"key":"7_CR30","first-page":"47","volume":"26","author":"GC Fox","year":"2015","unstructured":"Fox, G.C., Jha, S., Qiu, J., Ekanazake, S., Luckow, A.: Towards a comprehensive set of big data benchmarks. Big Data High Perform. Comput. 26, 47 (2015)","journal-title":"Big Data High Perform. Comput."},{"key":"7_CR31","unstructured":"Fox, G.C., Jha, S., Qiu, J., Luckow, A.: Ogres: a systematic approach to big data benchmarks. Big Data Extreme-scale Comput. (BDEC) 29\u201330 (2015). Barcelona, Spain"},{"key":"7_CR32","unstructured":"Frumkin, M.A., Shabanov, L.: Arithmetic data cube as a data intensive benchmark. Technical report, NAS-03-005, NASA Ames Research Center, Moffett Field, CA, March 2003 (2003)"},{"key":"7_CR33","doi-asserted-by":"publisher","first-page":"108952","DOI":"10.1109\/ACCESS.2020.2998358","volume":"8","author":"A Fuller","year":"2020","unstructured":"Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and open research. IEEE Access 8, 108952\u2013108971 (2020)","journal-title":"IEEE Access"},{"key":"7_CR34","unstructured":"Gao, W., et al.: BigDataBench: a scalable and unified big data and AI benchmark suite. arXiv preprint arXiv:1802.08254 (2018)"},{"key":"7_CR35","unstructured":"Gao, W., et al.: BigDataBench: a big data benchmark suite from web search engines. arXiv preprint arXiv:1307.0320 (2013)"},{"key":"7_CR36","doi-asserted-by":"publisher","unstructured":"Ghazal, A., et al.: BigBench: towards an industry standard benchmark for big data analytics. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, pp. 1197\u20131208. Association for Computing Machinery, New York (2013). https:\/\/doi.org\/10.1145\/2463676.2463712","DOI":"10.1145\/2463676.2463712"},{"key":"7_CR37","doi-asserted-by":"crossref","unstructured":"Guo, Y., Varbanescu, A.L., Iosup, A., Martella, C., Willke, T.L.: Benchmarking graph-processing platforms: a vision. In: Proceedings of the 5th ACM\/SPEC International Conference on Performance Engineering, pp. 289\u2013292 (2014)","DOI":"10.1145\/2568088.2576761"},{"key":"7_CR38","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1007\/978-3-319-29006-5_2","volume-title":"Big Data Benchmarks, Performance Optimization, and Emerging Hardware","author":"R Han","year":"2016","unstructured":"Han, R., et al.: BigDataBench-MT: a benchmark tool for generating realistic mixed data center workloads. In: Zhan, J., Han, R., Zicari, R.V. (eds.) BPOE 2015. LNCS, vol. 9495, pp. 10\u201321. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-29006-5_2"},{"key":"7_CR39","doi-asserted-by":"crossref","unstructured":"Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: characterization of the MapReduce-based data analysis. In: 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010), pp. 41\u201351. IEEE (2010)","DOI":"10.1109\/ICDEW.2010.5452747"},{"key":"7_CR40","unstructured":"Huang, S., Huang, J., Liu, Y., Yi, L., Dai, J.: HiBench: a representative and comprehensive Hadoop benchmark suite. In: Proceedings of the ICDE Workshops, pp. 41\u201351 (2010)"},{"key":"7_CR41","unstructured":"Intel: Hibench (2021). https:\/\/github.com\/Intel-bigdata\/HiBench"},{"issue":"13","key":"7_CR42","doi-asserted-by":"publisher","first-page":"1317","DOI":"10.14778\/3007263.3007270","volume":"9","author":"A Iosup","year":"2016","unstructured":"Iosup, A., et al.: LDBC graphalytics: a benchmark for large-scale graph analysis on parallel and distributed platforms. Proc. VLDB Endow. 9(13), 1317\u20131328 (2016)","journal-title":"Proc. VLDB Endow."},{"key":"7_CR43","unstructured":"Jack Dongarra, P.L.: HPC Challenge: Design, History, and Implementation Highlights, chap. 2. Chapman and Hall\/CRC (2013)"},{"key":"7_CR44","unstructured":"Dongarra, J., Heroux, M., Luszczek, P.: BOF HPCG benchmark update and a look at the HPL-AI benchmark (2021)"},{"issue":"7","key":"7_CR45","doi-asserted-by":"publisher","first-page":"2561","DOI":"10.1016\/j.jpdc.2014.01.003","volume":"74","author":"K Kambatla","year":"2014","unstructured":"Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J. Parallel Distrib. Comput. 74(7), 2561\u20132573 (2014)","journal-title":"J. Parallel Distrib. Comput."},{"key":"7_CR46","unstructured":"Li, P., Rao, X., Blase, J., Zhang, Y., Chu, X., Zhang, C.: CleanML: a benchmark for joint data cleaning and machine learning [experiments and analysis]. arXiv preprint arXiv:1904.09483, p. 75 (2019)"},{"key":"7_CR47","unstructured":"Luszczek, P., et al.: Introduction to the HPC challenge benchmark suite, December 2004"},{"key":"7_CR48","unstructured":"Dixit, K.M.: Overview of the SPEC benchmark. In: Gray, J. (ed.) The Benchmark Handbook, chap. 10, pp. 266\u2013290. Morgan Kaufmann Publishers Inc. (1993)"},{"key":"7_CR49","unstructured":"Mattson, P., et al.: MLPerf training benchmark. arXiv preprint arXiv:1910.01500 (2019)"},{"issue":"2","key":"7_CR50","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1109\/MM.2020.2974843","volume":"40","author":"P Mattson","year":"2020","unstructured":"Mattson, P., et al.: MLPerf: an industry standard benchmark suite for machine learning performance. IEEE Micro 40(2), 8\u201316 (2020)","journal-title":"IEEE Micro"},{"key":"7_CR51","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"138","DOI":"10.1007\/978-3-319-10596-3_11","volume-title":"Advancing Big Data Benchmarks","author":"Z Ming","year":"2014","unstructured":"Ming, Z., et al.: BDGS: a scalable big data generator suite in big data benchmarking. In: Rabl, T., Jacobsen, H.-A., Raghunath, N., Poess, M., Bhandarkar, M., Baru, C. (eds.) WBDB 2013. LNCS, vol. 8585, pp. 138\u2013154. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10596-3_11"},{"key":"7_CR52","first-page":"1886","volume-title":"SPEC Benchmarks","author":"M M\u00fcller","year":"2011","unstructured":"M\u00fcller, M., Whitney, B., Henschel, R., Kumaran, K.: SPEC Benchmarks, pp. 1886\u20131893. Springer, Boston (2011)"},{"key":"7_CR53","unstructured":"Narang, S.: Deepbench. https:\/\/svail.github.io\/DeepBench\/. Accessed 03 July 2021"},{"key":"7_CR54","unstructured":"Narang, S., Diamos, G.: An update to deepbench with a focus on deep learning inference. https:\/\/svail.github.io\/DeepBench-update\/. Accessed 03 July 2021"},{"key":"7_CR55","doi-asserted-by":"crossref","unstructured":"Ngai, W.L., Hegeman, T., Heldens, S., Iosup, A.: Granula: toward fine-grained performance analysis of large-scale graph processing platforms. In: Proceedings of the Fifth International Workshop on Graph Data-Management Experiences & Systems, pp. 1\u20136 (2017)","DOI":"10.1145\/3078447.3078455"},{"key":"7_CR56","unstructured":"Poess, M., Nambiar, R.O., Walrath, D.: Why you should run TPC-DS: a workload analysis. In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB 2007, pp. 1138\u20131149. VLDB Endowment (2007)"},{"key":"7_CR57","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1007\/978-3-642-18206-8_4","volume-title":"Performance Evaluation, Measurement and Characterization of Complex Systems","author":"T Rabl","year":"2011","unstructured":"Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A data generator for cloud-scale benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 41\u201356. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-18206-8_4"},{"key":"7_CR58","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1007\/978-3-319-96983-1_10","volume-title":"Euro-Par 2018: Parallel Processing","author":"M Radulovic","year":"2018","unstructured":"Radulovic, M., Asifuzzaman, K., Carpenter, P., Radojkovi\u0107, P., Ayguad\u00e9, E.: HPC benchmarking: scaling right and looking beyond the average. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014, pp. 135\u2013146. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-96983-1_10"},{"issue":"7","key":"7_CR59","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1145\/2699414","volume":"58","author":"DA Reed","year":"2015","unstructured":"Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM 58(7), 56\u201368 (2015)","journal-title":"Commun. ACM"},{"key":"7_CR60","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"548","DOI":"10.1007\/978-3-030-44584-3_43","volume-title":"Advances in Intelligent Data Analysis XVIII","author":"L von Rueden","year":"2020","unstructured":"von Rueden, L., Mayer, S., Sifa, R., Bauckhage, C., Garcke, J.: Combining machine learning and simulation to a hybrid modelling approach: current and future directions. In: Berthold, M.R., Feelders, A., Krempl, G. (eds.) IDA 2020. LNCS, vol. 12080, pp. 548\u2013560. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-44584-3_43"},{"key":"7_CR61","doi-asserted-by":"crossref","unstructured":"Tian, X., et al.: BigDataBench-S: an open-source scientific big data benchmark suite. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1068\u20131077. IEEE (2017)","DOI":"10.1109\/IPDPSW.2017.111"},{"key":"7_CR62","unstructured":"Vazhkudai, S.S., et al.: The design, deployment, and evaluation of the coral pre-exascale systems. In: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 661\u2013672 (2018)"},{"key":"7_CR63","unstructured":"Lioen, W., et al.: Evaluation of accelerated and non-accelerated benchmarks (2019)"},{"key":"7_CR64","doi-asserted-by":"crossref","unstructured":"Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services. In: 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA), pp. 488\u2013499. IEEE (2014)","DOI":"10.1109\/HPCA.2014.6835958"},{"key":"7_CR65","unstructured":"van der Wijngaart, R., Jin, H.: NAS parallel benchmarks, multi-zone versions. Technical report, NAS-03-010, NASA Ames Research Center, Moffett Field, CA, March 2003 (2003)"},{"key":"7_CR66","unstructured":"Wong, P., van der Wijngaart, R.: NAS parallel benchmarks i\/o version 2.4. Technical report, NAS-03-020, NASA Ames Research Center, Moffett Field, CA, March 2003 (2003)"},{"key":"7_CR67","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1007\/978-3-030-32813-9_5","volume-title":"Benchmarking, Measuring, and Optimizing","author":"Q Zhang","year":"2019","unstructured":"Zhang, Q., et al.: A survey on deep learning benchmarks: do we still need new ones? In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 36\u201349. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32813-9_5"}],"container-title":["Lecture Notes in Computer Science","Performance Evaluation and Benchmarking"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-94437-7_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,30]],"date-time":"2022-03-30T00:09:13Z","timestamp":1648598953000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-94437-7_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783030944360","9783030944377"],"references-count":67,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-94437-7_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"14 January 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"TPCTC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Technology Conference on Performance Evaluation and Benchmarking","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Copenhagen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Denmark","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 August 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 August 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"tpctc2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/tpc.org\/tpctc\/tpctc2021\/default5.asp","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"16","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"9","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"56% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Conference was held in conjunction with VLDB 2021.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}