{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T14:10:40Z","timestamp":1726150240884},"publisher-location":"Cham","reference-count":47,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030936624"},{"type":"electronic","value":"9783030936631"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-93663-1_9","type":"book-chapter","created":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T05:30:01Z","timestamp":1641015001000},"page":"103-120","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Benchmarking Multi-instance Learning for Multivariate Time Series Analysis"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1441-8569","authenticated-orcid":false,"given":"Rufat","family":"Babayev","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3515-9209","authenticated-orcid":false,"given":"Lena","family":"Wiese","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,1]]},"reference":[{"key":"9_CR1","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.artint.2013.06.003","volume":"201","author":"J Amores","year":"2013","unstructured":"Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81\u2013105 (2013)","journal-title":"Artif. Intell."},{"key":"9_CR2","unstructured":"Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, vol. 15, pp. 561\u2013568. MIT Press (2003)"},{"issue":"2","key":"9_CR3","doi-asserted-by":"publisher","first-page":"1043","DOI":"10.1177\/1460458219850323","volume":"26","author":"A Awad","year":"2019","unstructured":"Awad, A., Bader-El-Den, M., McNicholas, J., Briggs, J., El-Sonbaty, Y.: Predicting hospital mortality for intensive care unit patients: time-series analysis. Health Inform. J. 26(2), 1043\u20131059 (2019). https:\/\/doi.org\/10.1177\/1460458219850323","journal-title":"Health Inform. J."},{"key":"9_CR4","unstructured":"Begleiter, H.: UCI machine learning repository: EEG database data set (1999). https:\/\/archive.ics.uci.edu\/ml\/datasets\/eeg+database"},{"issue":"2","key":"9_CR5","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1007\/BF00058655","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123\u2013140 (1996). https:\/\/doi.org\/10.1007\/BF00058655","journal-title":"Mach. Learn."},{"key":"9_CR6","unstructured":"Brunner, L.S.: Brunner & Suddarth\u2019s Textbook of Medical-Surgical Nursing, vol. 1. Lippincott Williams & Wilkins (2010)"},{"key":"9_CR7","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1016\/j.patcog.2017.10.009","volume":"77","author":"MA Carbonneau","year":"2018","unstructured":"Carbonneau, M.A., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance learning: a survey of problem characteristics and applications. Pattern Recogn. 77, 329\u2013353 (2018)","journal-title":"Pattern Recogn."},{"issue":"1","key":"9_CR8","first-page":"1","volume":"8","author":"Z Che","year":"2018","unstructured":"Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 1\u201312 (2018)","journal-title":"Sci. Rep."},{"issue":"1\u20132","key":"9_CR9","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1016\/S0004-3702(96)00034-3","volume":"89","author":"TG Dietterich","year":"1997","unstructured":"Dietterich, T.G., Lathrop, R.H., Lozano-P\u00e9rez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1\u20132), 31\u201371 (1997)","journal-title":"Artif. Intell."},{"issue":"1","key":"9_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1017\/S026988890999035X","volume":"25","author":"J Foulds","year":"2010","unstructured":"Foulds, J., Frank, E.: A review of multi-instance learning assumptions. Knowl. Eng. Rev. 25(1), 1\u201325 (2010)","journal-title":"Knowl. Eng. Rev."},{"key":"9_CR11","doi-asserted-by":"crossref","unstructured":"Foulds, J., Smyth, P.: Multi-instance mixture models and semi-supervised learning. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 606\u2013617. SIAM (2011)","DOI":"10.1137\/1.9781611972818.52"},{"key":"9_CR12","unstructured":"Foulds, J.R.: Learning instance weights in multi-instance learning. Ph.D. thesis, The University of Waikato (2008)"},{"key":"9_CR13","unstructured":"Frank, E.T., Xu, X.: Applying propositional learning algorithms to multi-instance data. Technical report, University of Waikato, Department of Computer Science, Hamilton, NZ, June 2003"},{"key":"9_CR14","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"362","DOI":"10.1007\/978-3-319-03680-9_37","volume-title":"AI 2013: Advances in Artificial Intelligence","author":"E Frank","year":"2013","unstructured":"Frank, E., Pfahringer, B.: Propositionalisation of multi-instance data using random forests. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp. 362\u2013373. Springer, Cham (2013). https:\/\/doi.org\/10.1007\/978-3-319-03680-9_37"},{"key":"9_CR15","unstructured":"Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, pp. 148\u2013156. Morgan Kaufmann, San Francisco (1996)"},{"issue":"2","key":"9_CR16","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1214\/aos\/1016218223","volume":"95","author":"J Friedman","year":"2000","unstructured":"Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 95(2), 337\u2013407 (2000)","journal-title":"Ann. Stat."},{"key":"9_CR17","unstructured":"Guan, X., Raich, R., Wong, W.K.: Efficient multi-instance learning for activity recognition from time series data using an auto-regressive hidden Markov model. In: International Conference on Machine Learning, pp. 2330\u20132339 (2016)"},{"issue":"1","key":"9_CR18","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10\u201318 (2009)","journal-title":"SIGKDD Explor."},{"key":"9_CR19","unstructured":"Harutyunyan, H., Khachatrian, H., Kale, D.C., Steeg, G.V., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. arXiv preprint arXiv:1703.07771 (2017)"},{"key":"9_CR20","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/978-3-319-47759-6_2","volume-title":"Multiple Instance Learning","author":"F Herrera","year":"2016","unstructured":"Herrera, F., et al.: Multiple instance learning. In: Herrera, F., et al. (eds.) Multiple Instance Learning, pp. 17\u201333. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-47759-6_2"},{"key":"9_CR21","volume-title":"Oncology Informatics: Using Health Information Technology to Improve Processes and Outcomes in Cancer","author":"BW Hesse","year":"2016","unstructured":"Hesse, B.W., Ahern, D., Beckjord, E.: Oncology Informatics: Using Health Information Technology to Improve Processes and Outcomes in Cancer. Academic Press, Cambridge (2016)"},{"issue":"7212","key":"9_CR22","doi-asserted-by":"publisher","first-page":"738","DOI":"10.1136\/bmj.319.7212.738","volume":"319","author":"JG Howie","year":"1999","unstructured":"Howie, J.G., Heaney, D.J., Maxwell, M., Walker, J.J., Freeman, G.K., Rai, H.: Quality at general practice consultations: cross sectional survey. BMJ 319(7212), 738\u2013743 (1999)","journal-title":"BMJ"},{"key":"9_CR23","doi-asserted-by":"crossref","unstructured":"Huang, Y., Wang, W., Wang, L., Tan, T.: Multi-task deep neural network for multi-label learning. In: 2013 IEEE International Conference on Image Processing, pp. 2897\u20132900. IEEE (2013)","DOI":"10.1109\/ICIP.2013.6738596"},{"key":"9_CR24","doi-asserted-by":"crossref","unstructured":"Jafari, A., Gandhi, S., Konuru, S.H., Hairston, W.D., Oates, T., Mohsenin, T.: An EEG artifact identification embedded system using ICA and multi-instance learning. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1\u20134. IEEE (2017)","DOI":"10.1109\/ISCAS.2017.8050346"},{"key":"9_CR25","unstructured":"Johnson, A.E., Dunkley, N., Mayaud, L., Tsanas, A., Kramer, A.A., Clifford, G.D.: Patient specific predictions in the intensive care unit using a Bayesian ensemble. In: 2012 Computing in Cardiology, pp. 249\u2013252. IEEE (2012)"},{"key":"9_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/sdata.2016.35","volume":"3","author":"AE Johnson","year":"2016","unstructured":"Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 1\u20139 (2016)","journal-title":"Sci. Data"},{"key":"9_CR27","unstructured":"Kandemir, M., Hamprecht, F.A.: Instance label prediction by Dirichlet process multiple instance learning. In: UAI, pp. 380\u2013389 (2014)"},{"issue":"3","key":"9_CR28","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1162\/089976601300014493","volume":"13","author":"S Keerthi","year":"2001","unstructured":"Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to Platt\u2019s SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637\u2013649 (2001)","journal-title":"Neural Comput."},{"key":"9_CR29","unstructured":"Kohane, I.: UCI machine learning repository: ICU data set (1994). https:\/\/archive.ics.uci.edu\/ml\/datasets\/ICU"},{"key":"9_CR30","unstructured":"Kotzias, D., Denil, M., Blunsom, P., de Freitas, N.: Deep multi-instance transfer learning. arXiv preprint arXiv:1411.3128 (2014)"},{"issue":"12","key":"9_CR31","doi-asserted-by":"publisher","first-page":"i52","DOI":"10.1093\/bioinformatics\/btw252","volume":"32","author":"OZ Kraus","year":"2016","unstructured":"Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32(12), i52\u2013i59 (2016)","journal-title":"Bioinformatics"},{"key":"9_CR32","unstructured":"Lipton, Z.C., Kale, D.C., Wetzel, R.: Modeling missing data in clinical time series with RNNs. arXiv preprint arXiv:1606.04130 (2016)"},{"issue":"12","key":"9_CR33","doi-asserted-by":"publisher","first-page":"1343","DOI":"10.1111\/j.1365-2044.2012.07302.x","volume":"67","author":"N McMahon","year":"2012","unstructured":"McMahon, N., Hogg, L., Corfield, A., Exton, A.: Comparison of non-invasive and invasive blood pressure in aeromedical care. Anaesthesia 67(12), 1343\u20131347 (2012)","journal-title":"Anaesthesia"},{"issue":"1","key":"9_CR34","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.artint.2006.10.014","volume":"171","author":"R Nock","year":"2007","unstructured":"Nock, R., Nielsen, F.: A real generalization of discrete AdaBoost. Artif. Intell. 171(1), 25\u201341 (2007)","journal-title":"Artif. Intell."},{"key":"9_CR35","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1016\/j.smhl.2018.07.001","volume":"9","author":"R Sadeghi","year":"2018","unstructured":"Sadeghi, R., Banerjee, T., Romine, W.: Early hospital mortality prediction using vital signals. Smart Health 9, 265\u2013274 (2018)","journal-title":"Smart Health"},{"key":"9_CR36","unstructured":"Salamon, J., McFee, B., Li, P., Bello, J.P.: DCASE 2017 submission: multiple instance learning for sound event detection. In: Detection and Classification of Acoustic Scenes and Events 2017 (2017)"},{"issue":"1","key":"9_CR37","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1111\/j.1752-0606.2002.tb01173.x","volume":"28","author":"JG Sandberg","year":"2002","unstructured":"Sandberg, J.G., Johnson, L.N., Robia, M., Miller, R.B.: Clinician identified barriers to clinical research. J. Marital Fam. Ther. 28(1), 61\u201367 (2002)","journal-title":"J. Marital Fam. Ther."},{"key":"9_CR38","unstructured":"Silva, I., Moody, G., Scott, D.J., Celi, L.A., Mark, R.G.: Predicting in-hospital mortality of ICU patients: the PhysioNet\/computing in cardiology challenge 2012. In: 2012 Computing in Cardiology, pp. 245\u2013248. IEEE (2012)"},{"issue":"4","key":"9_CR39","doi-asserted-by":"publisher","first-page":"1053","DOI":"10.1162\/NECO_a_00939","volume":"29","author":"H Soleimani","year":"2017","unstructured":"Soleimani, H., Miller, D.J.: Semisupervised, multilabel, multi-instance learning for structured data. Neural Comput. 29(4), 1053\u20131102 (2017)","journal-title":"Neural Comput."},{"key":"9_CR40","doi-asserted-by":"crossref","unstructured":"Song, H., Rajan, D., Thiagarajan, J.J., Spanias, A.: Attend and diagnose: clinical time series analysis using attention models. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)","DOI":"10.1609\/aaai.v32i1.11635"},{"key":"9_CR41","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"468","DOI":"10.1007\/978-3-540-39857-8_42","volume-title":"Machine Learning: ECML 2003","author":"N Weidmann","year":"2003","unstructured":"Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-instance problems. In: Lavra\u010d, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 468\u2013479. Springer, Heidelberg (2003). https:\/\/doi.org\/10.1007\/978-3-540-39857-8_42"},{"key":"9_CR42","doi-asserted-by":"crossref","unstructured":"Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3460\u20133469 (2015)","DOI":"10.1109\/CVPR.2015.7298968"},{"key":"9_CR43","unstructured":"Xu, X.: Statistical learning in multiple instance problems. Ph.D. thesis, The University of Waikato (2003)"},{"issue":"5","key":"9_CR44","doi-asserted-by":"publisher","first-page":"1332","DOI":"10.1109\/TMI.2016.2524985","volume":"35","author":"Z Yan","year":"2016","unstructured":"Yan, Z., et al.: Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35(5), 1332\u20131343 (2016)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"9_CR45","doi-asserted-by":"crossref","unstructured":"Zhang, Z.L., Zhang, M.L.: Multi-instance multi-label learning with application to scene classification. In: Advances in Neural Information Processing Systems, pp. 1609\u20131616 (2007)","DOI":"10.7551\/mitpress\/7503.003.0206"},{"key":"9_CR46","doi-asserted-by":"crossref","unstructured":"Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as non-IID samples. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1249\u20131256 (2009)","DOI":"10.1145\/1553374.1553534"},{"key":"9_CR47","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"603","DOI":"10.1007\/978-3-319-66179-7_69","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2017","author":"W Zhu","year":"2017","unstructured":"Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 603\u2013611. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66179-7_69"}],"container-title":["Lecture Notes in Computer Science","Heterogeneous Data Management, Polystores, and Analytics for Healthcare"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-93663-1_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,15]],"date-time":"2023-11-15T03:48:05Z","timestamp":1700020085000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-93663-1_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030936624","9783030936631"],"references-count":47,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-93663-1_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"1 January 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DMAH","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"VLDB Workshop on Data Management and Analytics for Medicine and Healthcare","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 August 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 August 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dmah2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/vldbdmah2021","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"57% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2 Invited papers","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}