{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T13:50:45Z","timestamp":1726149045173},"publisher-location":"Cham","reference-count":12,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030922726"},{"type":"electronic","value":"9783030922733"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-92273-3_47","type":"book-chapter","created":{"date-parts":[[2021,12,4]],"date-time":"2021-12-04T21:34:27Z","timestamp":1638653667000},"page":"574-584","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Hybrid DE-MLP-Based Modeling Technique for\u00a0Prediction of\u00a0Alloying Element Proportions and\u00a0Process Parameters"],"prefix":"10.1007","author":[{"given":"Ravindra V.","family":"Savangouder","sequence":"first","affiliation":[]},{"given":"Jagdish C.","family":"Patra","sequence":"additional","affiliation":[]},{"given":"Suresh","family":"Palanisamy","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,12,5]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Arafeh, L., Singh, H., Putatunda, S.K.: A neuro fuzzy logic approach to material processing. IEEE Trans. Syst., Man Cybern. Syst Part C 29(3), 362\u2013370 (1999)","key":"47_CR1","DOI":"10.1109\/5326.777072"},{"issue":"1","key":"47_CR2","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1109\/TEVC.2010.2059031","volume":"15","author":"S Das","year":"2011","unstructured":"Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4\u201331 (2011)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"47_CR3","volume-title":"Neural Networks","author":"S Haykin","year":"1999","unstructured":"Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, Upper Saddle River (1999)","edition":"2"},{"key":"47_CR4","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1016\/j.apenergy.2013.06.004","volume":"112","author":"LL Jiang","year":"2013","unstructured":"Jiang, L.L., Maskell, D.L., Patra, J.C.: Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Appl. Energ. 112, 185\u2013193 (2013)","journal-title":"Appl. Energ."},{"unstructured":"Keough, J.: Austempered Ductile Iron (ADI) - a green alternative. American Foundry Society, Schaumburg (2011). www.afsinc.org","key":"47_CR5"},{"issue":"1","key":"47_CR6","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1002\/pip.985","volume":"19","author":"JC Patra","year":"2011","unstructured":"Patra, J.C.: Neural network-based model for dual-junction solar cells. Prog. Photovoltaics Res. Appl. 19(1), 33\u201344 (2011)","journal-title":"Prog. Photovoltaics Res. Appl."},{"issue":"4","key":"47_CR7","doi-asserted-by":"publisher","first-page":"505","DOI":"10.1109\/TSMCB.2002.1018769","volume":"32","author":"JC Patra","year":"2002","unstructured":"Patra, J.C., Kot, A.C.: Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B 32(4), 505\u2013511 (2002)","journal-title":"IEEE Trans. Syst. Man Cybern. Part B"},{"key":"47_CR8","doi-asserted-by":"publisher","first-page":"782","DOI":"10.1016\/j.matdes.2011.09.052","volume":"35","author":"H PourAsiabi","year":"2012","unstructured":"PourAsiabi, H., PourAsiabi, H., AmirZadeh, Z., BabaZadeh, M.: Development a multi-layer perceptron artificial neural network model to estimate the Vickers hardness of Mn-Ni-Cu-Mo austempered ductile iron. Mater. Des. 35, 782\u2013789 (2012)","journal-title":"Mater. Des."},{"key":"47_CR9","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1007\/978-3-030-36802-9_43","volume-title":"Neural Information Processing","author":"RV Savangouder","year":"2019","unstructured":"Savangouder, R.V., Patra, J.C., Bornand, C.: Artificial neural network-based modeling for prediction of hardness of austempered ductile iron. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) Neural Information Processing, pp. 405\u2013413. Springer International Publishing, Cham (2019)"},{"issue":"4","key":"47_CR10","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1023\/A:1008202821328","volume":"11","author":"R Storn","year":"1997","unstructured":"Storn, R., Price, K.: Differential evolution - simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341\u2013359 (1997)","journal-title":"J. Glob. Optim."},{"key":"47_CR11","doi-asserted-by":"publisher","first-page":"628","DOI":"10.1007\/978-3-319-70087-8_65","volume-title":"Neural Information Processing","author":"D Varela","year":"2017","unstructured":"Varela, D., Santos, J.: A hybrid evolutionary algorithm for protein structure prediction using the face-centered cubic lattice model. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.M. (eds.) Neural Information Processing, pp. 628\u2013638. Springer International Publishing, Cham (2017)"},{"issue":"5","key":"47_CR12","doi-asserted-by":"publisher","first-page":"513","DOI":"10.1080\/13640461.2003.11819537","volume":"15","author":"MA Yescas","year":"2003","unstructured":"Yescas, M.A.: Prediction of the Vickers hardness in austempered ductile irons using neural networks. Int. J. Cast Met. Res. 15(5), 513\u2013521 (2003)","journal-title":"Int. J. Cast Met. Res."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-92273-3_47","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,4]],"date-time":"2021-12-04T21:40:47Z","timestamp":1638654047000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-92273-3_47"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030922726","9783030922733"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-92273-3_47","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"5 December 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sanur, Bali","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Indonesia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 December 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 December 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iconip2021.apnns.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1093","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"226","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"177","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.57","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to the COVID-19 pandemic the conference was held online.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}