{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T15:32:55Z","timestamp":1742916775804,"version":"3.40.3"},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030922726"},{"type":"electronic","value":"9783030922733"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-92273-3_18","type":"book-chapter","created":{"date-parts":[[2021,12,4]],"date-time":"2021-12-04T21:34:27Z","timestamp":1638653667000},"page":"212-223","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":79,"title":["On the\u00a0Unreasonable Effectiveness of\u00a0Centroids in\u00a0Image Retrieval"],"prefix":"10.1007","author":[{"given":"Miko\u0142aj","family":"Wieczorek","sequence":"first","affiliation":[]},{"given":"Barbara","family":"Rychalska","sequence":"additional","affiliation":[]},{"given":"Jacek","family":"D\u0105browski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,12,5]]},"reference":[{"key":"18_CR1","unstructured":"Diao, H., Zhang, Y., Ma, L., Lu, H.: Similarity reasoning and filtration for image-text matching. ArXiv abs\/2101.01368 (2021)"},{"key":"18_CR2","doi-asserted-by":"crossref","unstructured":"Do, T.T., Tran, T., Reid, I.D., Kumar, B.V., Hoang, T., Carneiro, G.: A theoretically sound upper bound on the triplet loss for improving the efficiency of deep distance metric learning. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10396\u201310405 (2019)","DOI":"10.1109\/CVPR.2019.01065"},{"key":"18_CR3","doi-asserted-by":"crossref","unstructured":"Fortiz, M.A.L., Damen, D., Mayol-Cuevas, W.: Centroids triplet network and temporally-consistent embeddings for in-situ object recognition. In: 2020 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10796\u201310802 (2020)","DOI":"10.1109\/IROS45743.2020.9341050"},{"key":"18_CR4","unstructured":"Jun, H., Ko, B., Kim, Y., Kim, I., Kim, J.: Combination of multiple global descriptors for image retrieval. ArXiv abs\/1903.10663 (2019)"},{"key":"18_CR5","doi-asserted-by":"crossref","unstructured":"Kiapour, M.H., Han, X., Lazebnik, S., Berg, A.C., Berg, T.L.: Where to buy it: matching street clothing photos in online shops. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3343\u20133351 (2015)","DOI":"10.1109\/ICCV.2015.382"},{"key":"18_CR6","doi-asserted-by":"crossref","unstructured":"Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1096\u20131104 (2016)","DOI":"10.1109\/CVPR.2016.124"},{"key":"18_CR7","doi-asserted-by":"publisher","first-page":"2597","DOI":"10.1109\/TMM.2019.2958756","volume":"22","author":"H Luo","year":"2020","unstructured":"Luo, H., et al.: A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans. Multimedia 22, 2597\u20132609 (2020)","journal-title":"IEEE Trans. Multimedia"},{"key":"18_CR8","doi-asserted-by":"crossref","unstructured":"Noh, H., de Ara\u00fajo, A.F., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3476\u20133485 (2017)","DOI":"10.1109\/ICCV.2017.374"},{"key":"18_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/978-3-319-48881-3_2","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"E Ristani","year":"2016","unstructured":"Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for\u00a0multi-target, multi-camera tracking. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17\u201335. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48881-3_2"},{"key":"18_CR10","doi-asserted-by":"crossref","unstructured":"Wang, G., Lai, J., Huang, P., Xie, X.: Spatial-temporal person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8933\u20138940 (2019)","DOI":"10.1609\/aaai.v33i01.33018933"},{"key":"18_CR11","doi-asserted-by":"crossref","unstructured":"Wang, J., Wang, K.C., Law, M.T., Rudzicz, F., Brudno, M.: Centroid-based deep metric learning for speaker recognition. In: ICASSP 2019\u20132019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3652\u20133656 (2019)","DOI":"10.1109\/ICASSP.2019.8683393"},{"key":"18_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"499","DOI":"10.1007\/978-3-319-46478-7_31","volume-title":"Computer Vision \u2013 ECCV 2016","author":"Y Wen","year":"2016","unstructured":"Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499\u2013515. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46478-7_31"},{"key":"18_CR13","doi-asserted-by":"publisher","unstructured":"Wieczorek, M., Michalowski, A., Wroblewska, A., Dabrowski, J.: A strong baseline for fashion retrieval with person re-identification models. In: Communications in Computer and Information Science, vol. 1332, pp. 294\u2013301 (2020). https:\/\/doi.org\/10.1007\/978-3-030-63820-7_33","DOI":"10.1007\/978-3-030-63820-7_33"},{"key":"18_CR14","doi-asserted-by":"publisher","unstructured":"Xiao, T., Li, H., Ouyang, W., Wang, X.: Learning deep feature representations with domain guided dropout for person re-identification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.140","DOI":"10.1109\/CVPR.2016.140"},{"key":"18_CR15","doi-asserted-by":"crossref","unstructured":"Yuan, Y., Chen, W., Yang, Y., Wang, Z.: In defense of the triplet loss again: learning robust person re-identification with fast approximated triplet loss and label distillation. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1454\u20131463 (2020)","DOI":"10.1109\/CVPRW50498.2020.00185"},{"key":"18_CR16","unstructured":"Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning. In: BMVC (2019)"},{"key":"18_CR17","unstructured":"Zhang, Z., Lan, C., Zeng, W., Chen, Z., Chang, S.F.: Rethinking classification loss designs for person re-identification with a unified view. ArXiv abs\/2006.04991 (2020)"},{"key":"18_CR18","doi-asserted-by":"crossref","unstructured":"Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1116\u20131124 (2015)","DOI":"10.1109\/ICCV.2015.133"},{"key":"18_CR19","doi-asserted-by":"crossref","unstructured":"Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Omni-scale feature learning for person re-identification. In: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 3701\u20133711 (2019)","DOI":"10.1109\/ICCV.2019.00380"},{"key":"18_CR20","doi-asserted-by":"crossref","unstructured":"Zhou, S., Wang, J., Wang, J., Gong, Y., Zheng, N.: Point to set similarity based deep feature learning for person re-identification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5028\u20135037 (2017)","DOI":"10.1109\/CVPR.2017.534"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-92273-3_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T19:55:12Z","timestamp":1726257312000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-92273-3_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030922726","9783030922733"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-92273-3_18","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"5 December 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sanur, Bali","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Indonesia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 December 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 December 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iconip2021.apnns.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1093","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"226","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"177","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.57","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to the COVID-19 pandemic the conference was held online.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}