{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T00:42:48Z","timestamp":1743036168533,"version":"3.40.3"},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030914141"},{"type":"electronic","value":"9783030914158"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-91415-8_24","type":"book-chapter","created":{"date-parts":[[2021,11,17]],"date-time":"2021-11-17T18:04:03Z","timestamp":1637172243000},"page":"279-288","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Novel Prediction Framework for Two-Year Stroke Recurrence Using Retinal Images"],"prefix":"10.1007","author":[{"given":"Yidan","family":"Dai","sequence":"first","affiliation":[]},{"given":"Yuanyuan","family":"Zhuo","sequence":"additional","affiliation":[]},{"given":"Xingxian","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Haibo","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Xiaomao","family":"Fan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,18]]},"reference":[{"issue":"11","key":"24_CR1","doi-asserted-by":"publisher","first-page":"2559","DOI":"10.1161\/hs1101.098524","volume":"32","author":"AJ Grau","year":"2001","unstructured":"Grau, A.J., et al.: Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German stroke data bank. Stroke 32(11), 2559\u20132566 (2001). https:\/\/doi.org\/10.1161\/hs1101.098524","journal-title":"Stroke"},{"issue":"6","key":"24_CR2","doi-asserted-by":"publisher","first-page":"1457","DOI":"10.1161\/01.STR.0000072985.24967.7F","volume":"34","author":"T Hillen","year":"2003","unstructured":"Hillen, T., Coshall, C., Tilling, K., Rudd, A.G., McGovern, R., Wolfe, C.D.A.: Cause of stroke recurrence is multifactorial: patterns, risk factors, and outcomes of stroke recurrence in the south London stroke register. Stroke 34(6), 1457\u20131463 (2003)","journal-title":"Stroke"},{"key":"24_CR3","doi-asserted-by":"publisher","first-page":"286","DOI":"10.1016\/j.enfcli.2019.04.035","volume":"29","author":"IM Kariasa","year":"2019","unstructured":"Kariasa, I.M., Nurachmah, E., Koestoer, R.A.: Analysis of participants\u2019 characteristics and risk factors for stroke recurrence. Enferm. Clin. 29, 286\u2013290 (2019)","journal-title":"Enferm. Clin."},{"key":"24_CR4","doi-asserted-by":"crossref","unstructured":"Li, X., Chang, W., Zhou, S., Wei, F.: The panel data predictive model for recurrence of cerebral infarction with health care data analysis. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 2380\u20132385. IEEE (2017)","DOI":"10.1109\/IEEM.2017.8290318"},{"issue":"3","key":"24_CR5","doi-asserted-by":"publisher","first-page":"352","DOI":"10.1136\/svn-2020-000526","volume":"6","author":"X Jie","year":"2021","unstructured":"Jie, X., et al.: Ambulatory blood pressure profile and stroke recurrence. Stroke Vasc. Neurol. 6(3), 352\u2013358 (2021)","journal-title":"Stroke Vasc. Neurol."},{"key":"24_CR6","unstructured":"Zee, B., et al.: Stroke risk as assessment for the community by automatic retinal image analysis using fundus photograph. Qual. Primary Care 24(3), 114\u2013124 (2016)"},{"key":"24_CR7","doi-asserted-by":"crossref","unstructured":"De Boever, P., et al.: Static and dynamic retinal vessel analyses in patients with stroke as compared to healthy control subjects. Acta Ophthalmologica 94 (2016)","DOI":"10.1111\/j.1755-3768.2016.0706"},{"issue":"4","key":"24_CR8","doi-asserted-by":"publisher","first-page":"104581","DOI":"10.1016\/j.jstrokecerebrovasdis.2019.104581","volume":"29","author":"Y Zhuo","year":"2020","unstructured":"Zhuo, Y., Wu, J., Qu, Y., Yu, H., Yuan, W., Yang, Z.: Comparison of prediction models based on risk factors and retinal characteristics associated with recurrence one year after ischemic stroke. J. Stroke Cerebrovasc. Dis. 29(4), 104581 (2020)","journal-title":"J. Stroke Cerebrovasc. Dis."},{"key":"24_CR9","unstructured":"Zee, C.Y. Lee, J.W., Li, E.Q.: Method and device for retinal image analysis. US (2014). Patent no. US20120257164 A1"},{"issue":"3","key":"24_CR10","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1076\/ceyr.27.3.143.16049","volume":"27","author":"MD Knudtson","year":"2003","unstructured":"Knudtson, M.D., Lee, K.E., Hubbard, L.D., Wong, T.Y., Klein, R., Klein, B.E.K.: Revised formulas for summarizing retinal vessel diameters. Curr. Eye Res. 27(3), 143\u2013149 (2003). https:\/\/doi.org\/10.1076\/ceyr.27.3.143.16049","journal-title":"Curr. Eye Res."},{"issue":"4","key":"24_CR11","doi-asserted-by":"publisher","first-page":"1329","DOI":"10.1167\/iovs.05-1248","volume":"47","author":"N Patton","year":"2006","unstructured":"Patton, N., Aslam, T., Macgillivray, T., Dhillon, B., Constable, I.: Asymmetry of retinal arteriolar branch widths at junctions affects ability of formulae to predict trunk arteriolar widths. Invest. Ophthalmol. Vis. Sci. 47(4), 1329\u20131333 (2006)","journal-title":"Invest. Ophthalmol. Vis. Sci."},{"issue":"9288","key":"24_CR12","doi-asserted-by":"publisher","first-page":"1134","DOI":"10.1016\/S0140-6736(01)06253-5","volume":"358","author":"TY Wong","year":"2001","unstructured":"Wong, T.Y., Klein, R., Couper, D.J., Cooper, L.S., Sharrett, A.R.: Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study. Lancet 358(9288), 1134\u20131140 (2001)","journal-title":"Lancet"},{"key":"24_CR13","doi-asserted-by":"crossref","unstructured":"Wong, T.Y., et al.: Cerebral white matter lesions, retinopathy, and incident clinical stroke. J. Am. Med. Assoc. (JAMA) 288, 1\u201367 (2002)","DOI":"10.1001\/jama.288.1.67"},{"issue":"5","key":"24_CR14","doi-asserted-by":"publisher","first-page":"975","DOI":"10.1161\/01.HYP.0000216717.72048.6c","volume":"47","author":"N Witt","year":"2006","unstructured":"Witt, N., et al.: Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 47(5), 975\u2013981 (2006)","journal-title":"Hypertension"},{"issue":"2","key":"24_CR15","doi-asserted-by":"publisher","first-page":"158","DOI":"10.1136\/jnnp.2008.153460","volume":"80","author":"FN Doubal","year":"2009","unstructured":"Doubal, F.N., Hokke, P.E., Wardlaw, J.M.: Retinal microvascular abnormalities and stroke: a systematic review. J. Neurol. Neurosurg. Psychiatry 80(2), 158\u2013165 (2009)","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"24_CR16","doi-asserted-by":"crossref","unstructured":"Li, W.L., Yu, R.H., Wang, X.Z.: Discretization of continuous valued attributes in decision tree generation. In: International Conference on Machine Learning and Cybernetics (2010)","DOI":"10.1109\/ICMLC.2010.5581069"},{"issue":"2","key":"24_CR17","first-page":"15","volume":"11","author":"A Bansal","year":"2021","unstructured":"Bansal, A., Saini, M., Singh, R., Yadav, J.K.: Analysis of smote: Modified for diverse imbalanced datasets under the IoT environment. Int. J. Inf. Retrieval Res. (IJIRR) 11(2), 15\u201337 (2021)","journal-title":"Int. J. Inf. Retrieval Res. (IJIRR)"},{"issue":"3","key":"24_CR18","doi-asserted-by":"publisher","first-page":"372","DOI":"10.1080\/10705511.2012.687671","volume":"19","author":"FB Bryant","year":"2012","unstructured":"Bryant, F.B., Satorra, A.: Principles and practice of scaled difference chi-square testing. Struct. Eqn. Model. A Multidisc. J. 19(3), 372\u2013398 (2012)","journal-title":"Struct. Eqn. Model. A Multidisc. J."},{"issue":"8","key":"24_CR19","first-page":"2342","volume":"40","author":"C Chen","year":"2019","unstructured":"Chen, C., Liang, X.: Feature selection method based on Gini index and chi square test. Comput. Eng. Des. 40(8), 2342\u20132345 (2019)","journal-title":"Comput. Eng. Des."},{"key":"24_CR20","doi-asserted-by":"publisher","unstructured":"Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013). https:\/\/doi.org\/10.1007\/978-1-4757-3264-1","DOI":"10.1007\/978-1-4757-3264-1"},{"issue":"5","key":"24_CR21","doi-asserted-by":"publisher","first-page":"988","DOI":"10.1109\/72.788640","volume":"10","author":"VN Vapnik","year":"1999","unstructured":"Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988\u2013999 (1999)","journal-title":"IEEE Trans. Neural Netw."},{"key":"24_CR22","doi-asserted-by":"publisher","first-page":"372","DOI":"10.1016\/j.asoc.2014.02.002","volume":"19","author":"PC Deka","year":"2014","unstructured":"Deka, P.C., et al.: Support vector machine applications in the field of hydrology: a review. Appl. Soft Comput. 19, 372\u2013386 (2014)","journal-title":"Appl. Soft Comput."},{"key":"24_CR23","doi-asserted-by":"publisher","first-page":"360","DOI":"10.1016\/j.catena.2015.10.010","volume":"137","author":"O Rahmati","year":"2016","unstructured":"Rahmati, O., Pourghasemi, H.R., Melesse, A.M.: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran region, Iran. CATENA 137, 360\u2013372 (2016)","journal-title":"CATENA"},{"key":"24_CR24","first-page":"368:m689","volume":"2020","author":"M Nagendran","year":"2020","unstructured":"Nagendran, M., et al.: Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 2020, 368:m689 (2020)","journal-title":"BMJ"},{"key":"24_CR25","doi-asserted-by":"crossref","unstructured":"Hefner, J.T., Linde, K.C.: Atlas of Human Cranial Macromorphoscopic Traits. Academic Press (2018)","DOI":"10.1016\/B978-0-12-814385-8.00002-1"},{"key":"24_CR26","doi-asserted-by":"crossref","unstructured":"Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785\u2013794 (2016)","DOI":"10.1145\/2939672.2939785"},{"key":"24_CR27","doi-asserted-by":"publisher","first-page":"100013","DOI":"10.1016\/j.medmic.2020.100013","volume":"4","author":"X-W Wang","year":"2020","unstructured":"Wang, X.-W., Liu, Y.-Y.: Comparative study of classifiers for human microbiome data. Med. Microecol. 4, 100013 (2020)","journal-title":"Med. Microecol."}],"container-title":["Lecture Notes in Computer Science","Bioinformatics Research and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-91415-8_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,11,17]],"date-time":"2021-11-17T18:07:57Z","timestamp":1637172477000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-91415-8_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030914141","9783030914158"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-91415-8_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"18 November 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ISBRA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Bioinformatics Research and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 November 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"isbra2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/alan.cs.gsu.edu\/isbra21\/?q=node\/1","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"51","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.95","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}