{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:57:36Z","timestamp":1726408656439},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030913045"},{"type":"electronic","value":"9783030913052"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-91305-2_19","type":"book-chapter","created":{"date-parts":[[2021,11,23]],"date-time":"2021-11-23T20:00:31Z","timestamp":1637697631000},"page":"249-259","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Fake News Detection Using Deep Learning"],"prefix":"10.1007","author":[{"given":"Srishti","family":"Sharma","sequence":"first","affiliation":[]},{"given":"Mala","family":"Saraswat","sequence":"additional","affiliation":[]},{"given":"Anil Kumar","family":"Dubey","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,1]]},"reference":[{"key":"19_CR1","unstructured":"Gartner reveals Top Predictions for IT organizations and users in 2018 and and beyond, https:\/\/www.gartner.com\/en\/newsroom\/press-releases\/2017-10-03-gartner-reveals-top-predictions-for-it-organizations-and-users-in-2018-and-beyond, Accessed 20 Jan 2021"},{"issue":"2","key":"19_CR2","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1257\/jep.31.2.211","volume":"31","author":"H Allcott","year":"2017","unstructured":"Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211\u2013236 (2017)","journal-title":"J. Econ. Perspect."},{"key":"19_CR3","unstructured":"News Use across Social Media Platforms 2016. https:\/\/www.journalism.org\/2016\/05\/26\/news-use-across-social-media-platforms-2016\/"},{"key":"19_CR4","doi-asserted-by":"crossref","unstructured":"Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675\u2013684, March 2011","DOI":"10.1145\/1963405.1963500"},{"key":"19_CR5","unstructured":"Qazvinian, V., Rosengren, E., Radev, D., Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 1589\u20131599, July 2011"},{"issue":"3","key":"19_CR6","doi-asserted-by":"publisher","first-page":"430","DOI":"10.1177\/0093650212453600","volume":"41","author":"M Balmas","year":"2014","unstructured":"Balmas, M.: When fake news becomes real: combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism. Commun. Res. 41(3), 430\u2013454 (2014)","journal-title":"Commun. Res."},{"key":"19_CR7","doi-asserted-by":"crossref","unstructured":"Afroz, S., Brennan, M., Greenstadt, R.: Detecting hoaxes, frauds, and deception in writing style online. In: 2012 IEEE Symposium on Security and Privacy,\u00a0pp. 461\u2013475, IEEE May 2012","DOI":"10.1109\/SP.2012.34"},{"issue":"6","key":"19_CR8","doi-asserted-by":"publisher","first-page":"811","DOI":"10.1109\/TDSC.2012.75","volume":"9","author":"Z Chu","year":"2012","unstructured":"Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Detecting automation of twitter accounts: are you a human, bot, or cyborg? IEEE Trans. Dependable Secure Comput. 9(6), 811\u2013824 (2012)","journal-title":"IEEE Trans. Dependable Secure Comput."},{"key":"19_CR9","doi-asserted-by":"crossref","unstructured":"Takahashi, T., Igata, N.: Rumor detection on twitter. In: The 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems, pp. 452\u2013457. IEEE November 2012","DOI":"10.1109\/SCIS-ISIS.2012.6505254"},{"key":"19_CR10","doi-asserted-by":"crossref","unstructured":"Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor propagation in online social media. In\u00a02013 IEEE 13th International Conference on Data Mining,\u00a0pp. 1103\u20131108. IEEE, December 2013","DOI":"10.1109\/ICDM.2013.61"},{"key":"19_CR11","doi-asserted-by":"crossref","unstructured":"Chen, C., Wu, K., Srinivasan, V., Zhang, X.: Battling the internet water army: detection of hidden paid posters. In: 2013 IEEE\/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013),\u00a0pp. 116\u2013120. IEEE, August 2013","DOI":"10.1145\/2492517.2492637"},{"key":"19_CR12","doi-asserted-by":"crossref","unstructured":"Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In\u00a0Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, pp. 4\u201311, December 2014","DOI":"10.1145\/2689746.2689747"},{"key":"19_CR13","doi-asserted-by":"crossref","unstructured":"Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: early detection of rumors in social media from enquiry posts. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1395\u20131405, May 2015","DOI":"10.1145\/2736277.2741637"},{"key":"19_CR14","doi-asserted-by":"crossref","unstructured":"Rubin, V.L., Conroy, N., Chen, Y., Cornwell, S.: Fake news or truth? using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection, pp. 7\u201317, June 2016","DOI":"10.18653\/v1\/W16-0802"},{"key":"19_CR15","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1007\/978-3-319-44748-3_17","volume-title":"Artificial Intelligence: Methodology, Systems, and Applications","author":"M Hardalov","year":"2016","unstructured":"Hardalov, M., Koychev, I., Nakov, P.: In search of credible news. In: Dichev, C., Agre, G. (eds.) AIMSA 2016. LNCS (LNAI), vol. 9883, pp. 172\u2013180. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-44748-3_17"},{"issue":"2","key":"19_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3316809","volume":"13","author":"MD Vicario","year":"2019","unstructured":"Vicario, M.D., Quattrociocchi, W., Scala, A., Zollo, F.: Polarization and fake news: early warning of potential misinformation targets. ACM Trans. Web (TWEB) 13(2), 1\u201322 (2019)","journal-title":"ACM Trans. Web (TWEB)"},{"key":"19_CR17","doi-asserted-by":"crossref","unstructured":"Zhang, X., Ghorbani, A.A.: An overview of online fake news: characterization, detection, and discussion.\u00a0Inf. Process. Manag.\u00a057(2), 102025 (2020)","DOI":"10.1016\/j.ipm.2019.03.004"},{"key":"19_CR18","doi-asserted-by":"crossref","unstructured":"Fernandez, A.C.T., Devaraj, M.: Computing the linguistic-based cues of fake news in the philippines towards its detection. In: Proceedings of the 9th International Conference on Web Intelligence, Mining and Semantics, pp. 1\u20139, June 2019","DOI":"10.1145\/3326467.3326490"},{"issue":"13","key":"19_CR19","doi-asserted-by":"publisher","first-page":"9625","DOI":"10.1007\/s00500-019-04473-7","volume":"24","author":"D Gaurav","year":"2019","unstructured":"Gaurav, D., Tiwari, S.M., Goyal, A., Gandhi, N., Abraham, A.: Machine intelligence-based algorithms for spam filtering on document labeling. Soft. Comput. 24(13), 9625\u20139638 (2019). https:\/\/doi.org\/10.1007\/s00500-019-04473-7","journal-title":"Soft. Comput."},{"key":"19_CR20","doi-asserted-by":"crossref","unstructured":"Yang, S., Shu, K., Wang, S., Gu, R., Wu, F., Liu, H.: Unsupervised fake news detection on social media: a generative approach. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5644\u20135651, July 2019","DOI":"10.1609\/aaai.v33i01.33015644"},{"key":"19_CR21","doi-asserted-by":"crossref","unstructured":"Sharma, S., Kalra, V., Agrawal, R.: Depression discovery in cancer communities using deep learning. In: Handbook of Deep Learning in Biomedical Engineering,\u00a0pp. 123\u2013154. Academic Press, Boca Raton (2021)","DOI":"10.1016\/B978-0-12-823014-5.00004-1"},{"key":"19_CR22","doi-asserted-by":"publisher","unstructured":"Kanagaraj, N., Hicks, D., Goyal, A., et al.: Deep learning using computer vision in self driving cars for lane and traffic sign detection.\u00a0Int. J. Syst. Assur. Eng. Manag.\u00a012, 1011\u20131025 (2021). https:\/\/doi.org\/10.1007\/s13198-021-01127-6","DOI":"10.1007\/s13198-021-01127-6"},{"key":"19_CR23","unstructured":"Segaran, T., Hammerbacher, J.: Beautiful Data: The Stories Behind Elegant Data Solutions, O\u2019Reilly Media Inc., Beijing (2009)"},{"key":"19_CR24","unstructured":"Norwig, P.: How to write a spelling corrector. norvig.com"},{"key":"19_CR25","doi-asserted-by":"crossref","unstructured":"Yang, F., Liu, Y., Yu, X., Yang, M.: Automatic detection of rumor on Sina Weibo. In: MDS 2012 (2012)","DOI":"10.1145\/2350190.2350203"},{"key":"19_CR26","doi-asserted-by":"publisher","unstructured":"Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.-F.: Detect rumors using time series of social context information on microblogging websites. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (CIKM 2015). Association for Computing Machinery, New York, NY, USA, pp. 1751\u20131754 (2015). https:\/\/doi.org\/10.1145\/2806416.2806607","DOI":"10.1145\/2806416.2806607"},{"key":"19_CR27","unstructured":"Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks. In: IJCAI, pp. 3818\u20133824 (2016)"},{"key":"19_CR28","doi-asserted-by":"publisher","first-page":"e0168344","DOI":"10.1371\/journal.pone.0168344","volume":"12","author":"S Kwon","year":"2017","unstructured":"Kwon, S., Cha, M., Jung, K.: Rumor detection over varying time windows. Plos One 12, e0168344 (2017). https:\/\/doi.org\/10.1371\/journal.pone.0168344","journal-title":"Plos One"},{"key":"19_CR29","doi-asserted-by":"publisher","unstructured":"Ma, J., Gao, W., Wong, K.-F.: Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning (2017). https:\/\/doi.org\/10.18653\/v1\/P17-1066","DOI":"10.18653\/v1\/P17-1066"},{"key":"19_CR30","doi-asserted-by":"crossref","unstructured":"Ajao, O., Bhowmik, D., Zargari, S.: Fake news identification on twitter with hybrid cnn and rnn models. In: Proceedings of the 9th International Conference on Social Media and Society, pp. 226\u2013230, July 2018","DOI":"10.1145\/3217804.3217917"}],"container-title":["Communications in Computer and Information Science","Knowledge Graphs and Semantic Web"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-91305-2_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,23]],"date-time":"2022-01-23T19:08:08Z","timestamp":1642964888000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-91305-2_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030913045","9783030913052"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-91305-2_19","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"1 January 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KGSWC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Iberoamerican Knowledge Graphs and Semantic Web Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kingsville, TX","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 November 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"kgswc2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.kgswc.org\/iberoamerican-conferences\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"85","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}