{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T12:51:05Z","timestamp":1726145465174},"publisher-location":"Cham","reference-count":34,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030910587"},{"type":"electronic","value":"9783030910594"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-91059-4_19","type":"book-chapter","created":{"date-parts":[[2021,11,4]],"date-time":"2021-11-04T15:02:57Z","timestamp":1636038177000},"page":"258-272","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Towards Accelerated Rates for\u00a0Distributed Optimization over\u00a0Time-Varying Networks"],"prefix":"10.1007","author":[{"given":"Alexander","family":"Rogozin","sequence":"first","affiliation":[]},{"given":"Vladislav","family":"Lukoshkin","sequence":"additional","affiliation":[]},{"given":"Alexander","family":"Gasnikov","sequence":"additional","affiliation":[]},{"given":"Dmitry","family":"Kovalev","sequence":"additional","affiliation":[]},{"given":"Egor","family":"Shulgin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,5]]},"reference":[{"key":"19_CR1","doi-asserted-by":"crossref","unstructured":"Nedi\u0107, A., Olshevsky, A., Uribe, C.A.: Fast convergence rates for distributed non-bayesian learning. IEEE Trans. Autom. Control 62(11), 5538\u20135553 (2017)","DOI":"10.1109\/TAC.2017.2690401"},{"key":"19_CR2","doi-asserted-by":"crossref","unstructured":"Ram, S.S., Veeravalli, V.V., Nedic, A.: Distributed non-autonomous power control through distributed convex optimization. In: IEEE INFOCOM 2009, pp. 3001\u20133005. IEEE (2009)","DOI":"10.1109\/INFCOM.2009.5062275"},{"key":"19_CR3","doi-asserted-by":"publisher","unstructured":"Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex optimization with inexact oracle. Math. Program. 37\u201375 (2013). https:\/\/doi.org\/10.1007\/s10107-013-0677-5","DOI":"10.1007\/s10107-013-0677-5"},{"key":"19_CR4","unstructured":"Devolder, O., Glineur, F., Nesterov, Yu.: First-order methods with inexact oracle: the strongly convex case. CORE Discussion Papers 2013016:47 (2013)"},{"key":"19_CR5","doi-asserted-by":"crossref","unstructured":"Jakoveti\u0107, D., Xavier, J., Moura, J.M.F.: Fast distributed gradient methods. IEEE Trans. Autom. Control 59(5), 1131\u20131146 (2014)","DOI":"10.1109\/TAC.2014.2298712"},{"issue":"4","key":"19_CR6","doi-asserted-by":"publisher","first-page":"2597","DOI":"10.1137\/16M1084316","volume":"27","author":"A Nedi\u0107","year":"2017","unstructured":"Nedi\u0107, A., Olshevsky, A., Shi, W.: Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J. Optim. 27(4), 2597\u20132633 (2017)","journal-title":"SIAM J. Optim."},{"key":"19_CR7","unstructured":"Scaman, K., Bach, F., Bubeck, S., Lee, Y.T., Massouli\u00e9, L.: Optimal algorithms for non-smooth distributed optimization in networks. In: Advances in Neural Information Processing Systems, pp. 2740\u20132749 (2018)"},{"key":"19_CR8","doi-asserted-by":"crossref","unstructured":"Pu, S., Shi, W., Xu, J., Nedich, A.: A push-pull gradient method for distributed optimization in networks. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 3385\u20133390 (2018)","DOI":"10.1109\/CDC.2018.8619047"},{"key":"19_CR9","doi-asserted-by":"crossref","unstructured":"Qu, G., Li, N.: Accelerated distributed Nesterov gradient descent. In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (2016)","DOI":"10.1109\/ALLERTON.2016.7852231"},{"issue":"2","key":"19_CR10","doi-asserted-by":"publisher","first-page":"944","DOI":"10.1137\/14096668X","volume":"25","author":"W Shi","year":"2015","unstructured":"Shi, W., Ling, Q., Gang, W., Yin, W.: Extra: an exact first-order algorithm for decentralized consensus optimization. SIAM J. Optim. 25(2), 944\u2013966 (2015)","journal-title":"SIAM J. Optim."},{"key":"19_CR11","unstructured":"Ye, H., Luo, L., Zhou, Z., Zhang, T.: Multi-consensus decentralized accelerated gradient descent. arXiv preprint arXiv:2005.00797 (2020)"},{"key":"19_CR12","unstructured":"Li, H., Fang, C., Yin, W., Lin, Z.: A sharp convergence rate analysis for distributed accelerated gradient methods. arXiv:1810.01053 (2018)"},{"issue":"1","key":"19_CR13","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1109\/TAC.2008.2009515","volume":"54","author":"A Nedic","year":"2009","unstructured":"Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48\u201361 (2009)","journal-title":"IEEE Trans. Autom. Control"},{"key":"19_CR14","unstructured":"Scaman, K., Bach, F., Bubeck, S., Lee, Y.T., Massouli\u00e9, L.: Optimal algorithms for smooth and strongly convex distributed optimization in networks. In: International Conference on Machine Learning, pp. 3027\u20133036 (2017)"},{"key":"19_CR15","doi-asserted-by":"crossref","unstructured":"Jakovetic, D.: A unification and generalization of exact distributed first order methods. IEEE Trans. Signal Inf. Process. Netw. 31\u201346 (2019)","DOI":"10.1109\/TSIPN.2018.2846183"},{"key":"19_CR16","doi-asserted-by":"publisher","unstructured":"Rogozin, A., Gasnikov, A.: Projected gradient method for decentralized optimization over time-varying networks (2019). https:\/\/doi.org\/10.1007\/978-3-030-62867-3_18","DOI":"10.1007\/978-3-030-62867-3_18"},{"key":"19_CR17","doi-asserted-by":"publisher","unstructured":"Dvinskikh, D., Gasnikov, A.: Decentralized and parallelized primal and dual accelerated methods for stochastic convex programming problems (2019). https:\/\/doi.org\/10.1515\/jiip-2020-0068","DOI":"10.1515\/jiip-2020-0068"},{"key":"19_CR18","doi-asserted-by":"publisher","unstructured":"Li, H., Lin, Z.: Revisiting extra for smooth distributed optimization (2020). https:\/\/doi.org\/10.1137\/18M122902X","DOI":"10.1137\/18M122902X"},{"key":"19_CR19","unstructured":"Hendrikx, H., Bach, F., Massoulie, L.: An optimal algorithm for decentralized finite sum optimization. arXiv preprint arXiv:2005.10675 (2020)"},{"key":"19_CR20","unstructured":"Li, H., Lin, Z., Fang, Y.: Optimal accelerated variance reduced EXTRA and DIGing for strongly convex and smooth decentralized optimization. arXiv preprint arXiv:2009.04373 (2020)"},{"key":"19_CR21","doi-asserted-by":"crossref","unstructured":"Wu, X., Lu, J.: Fenchel dual gradient methods for distributed convex optimization over time-varying networks. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2894\u20132899, December 2017","DOI":"10.1109\/CDC.2017.8264079"},{"issue":"1","key":"19_CR22","first-page":"173","volume":"4","author":"G Zhang","year":"2018","unstructured":"Zhang, G., Heusdens, R.: Distributed optimization using the primal-dual method of multipliers. IEEE Trans. Signal Inf. Process. Netw. 4(1), 173\u2013187 (2018)","journal-title":"IEEE Trans. Signal Inf. Process. Netw."},{"key":"19_CR23","doi-asserted-by":"crossref","unstructured":"Uribe, C.A., Lee, S., Gasnikov, A., Nedi\u0107, A.: A dual approach for optimal algorithms in distributed optimization over networks. Optim. Methods Softw. 1\u201340 (2020)","DOI":"10.1080\/10556788.2020.1750013"},{"key":"19_CR24","unstructured":"Arjevani, Y., Bruna, J., Can, B., G\u00fcrb\u00fczbalaban, M., Jegelka, S., Lin, H.: Ideal: inexact decentralized accelerated augmented Lagrangian method. arXiv preprint arXiv:2006.06733 (2020)"},{"key":"19_CR25","doi-asserted-by":"crossref","unstructured":"Wei, E., Ozdaglar, A.: Distributed alternating direction method of multipliers. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 5445\u20135450. IEEE (2012)","DOI":"10.1109\/CDC.2012.6425904"},{"key":"19_CR26","doi-asserted-by":"crossref","unstructured":"Maros, M., Jald\u00e9n, J.: PANDA: a dual linearly converging method for distributed optimization over time-varying undirected graphs. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 6520\u20136525 (2018)","DOI":"10.1109\/CDC.2018.8619626"},{"key":"19_CR27","doi-asserted-by":"publisher","unstructured":"Tang, J., Egiazarian, K., Golbabaee, M., Davies, M.: The practicality of stochastic optimization in imaging inverse problems (2019). https:\/\/doi.org\/10.1109\/TCI.2020.3032101","DOI":"10.1109\/TCI.2020.3032101"},{"key":"19_CR28","doi-asserted-by":"crossref","unstructured":"Stonyakin, F., et al.: Inexact relative smoothness and strong convexity for optimization and variational inequalities by inexact model. arXiv:2001.09013 (2020)","DOI":"10.1080\/10556788.2021.1924714"},{"key":"19_CR29","unstructured":"Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., Stich, S.U.: A unified theory of decentralized SGD with changing topology and local updates (2020). http:\/\/proceedings.mlr.press\/v119\/koloskova20a.html"},{"issue":"3","key":"19_CR30","first-page":"27","volume":"2","author":"C-C Chang","year":"2011","unstructured":"Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"key":"19_CR31","doi-asserted-by":"publisher","first-page":"4855","DOI":"10.1109\/TSP.2020.3018317","volume":"68","author":"H Li","year":"2020","unstructured":"Li, H., Fang, C., Yin, W., Lin, Z.: Decentralized accelerated gradient methods with increasing penalty parameters. IEEE Trans. Signal Process. 68, 4855\u20134870 (2020)","journal-title":"IEEE Trans. Signal Process."},{"key":"19_CR32","first-page":"1756","volume":"28","author":"Y Arjevani","year":"2015","unstructured":"Arjevani, Y., Shamir, O.: Communication complexity of distributed convex learning and optimization. Adv. Neural Inf. Process. Syst. 28, 1756\u20131764 (2015)","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"19_CR33","doi-asserted-by":"crossref","unstructured":"Dvinskikh, D.M., Turin, A.I., Gasnikov, A.V., Omelchenko, S.S.: Accelerated and non accelerated stochastic gradient descent in model generality. Matematicheskie Zametki 108(4), 515\u2013528 (2020)","DOI":"10.4213\/mzm12751"},{"key":"19_CR34","doi-asserted-by":"crossref","unstructured":"Rogozin, A., Lukoshkin, V., Gasnikov, A., Kovalev, D., Shulgin, E.: Towards accelerated rates for distributed optimization over time-varying networks. arXiv preprint arXiv:2009.11069 (2020)","DOI":"10.1007\/978-3-030-91059-4_19"}],"container-title":["Lecture Notes in Computer Science","Optimization and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-91059-4_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T23:04:26Z","timestamp":1638399866000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-91059-4_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030910587","9783030910594"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-91059-4_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"5 November 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"OPTIMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Optimization and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Petrovac","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Montenegro","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"optima2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/agora.guru.ru\/display.php?conf=OPTIMA-2021","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"63","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"65% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.1","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}